Previous |  Up |  Next

Article

Title: New representations of $(b, c)$-inverses (English)
Author: Fang, Li
Author: Zhao, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1117-1131
Summary lang: English
.
Category: math
.
Summary: We investigate how to give new representations of $(b,c)$-inverses in terms of core inverses and Drazin inverses. Various new criteria and representations of $(b,c)$-inverses in terms of core inverses and Drazin inverses are established from a new perspective. Since Moore-Penrose inverses, pseudo-inverses, core inverses, dual core inverses, and Bott-Duffin $(e, f )$-inverses are the special cases of $(b, c)$-inverses, new characterizations involving these generalized inverses are also established as corollaries of our results. (English)
Keyword: $(b,c)$-inverse
Keyword: core inverse
Keyword: Drazin inverse
MSC: 15A09
MSC: 16E50
MSC: 16U80
DOI: 10.21136/CMJ.2025.0409-24
.
Date available: 2025-12-20T07:14:43Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153234
.
Reference: [1] Azumaya, G.: Strongly $\pi$-regular rings.J. Fac. Sci., Hokkaido Univ., Ser. I 13 (1954), 34-39. Zbl 0058.02503, MR 0067864, 10.14492/hokmj/1530842562
Reference: [2] Baksalary, O. M., Trenkler, G.: Core inverse of matrices.Linear Multilinear Algebra 58 (2010), 681-697. Zbl 1202.15009, MR 2722752, 10.1080/03081080902778222
Reference: [3] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups.Am. Math. Mon. 65 (1958), 506-514. Zbl 0083.02901, MR 0098762, 10.1080/00029890.1958.11991949
Reference: [4] Drazin, M. P.: A class of outer generalized inverses.Linear Algebra Appl. 436 (2012), 1909-1923. Zbl 1254.15005, MR 2889966, 10.1016/j.laa.2011.09.004
Reference: [5] Han, R., Chen, J.: Generalized inverses of matrices over rings.Chin. Q. J. Math. 7 (1992), 40-47. Zbl 0963.15500
Reference: [6] Hartwig, R. E., Luh, J.: A note on the group structure of unit regular ring elements.Pac. J. Math. 71 (1977), 449-461. Zbl 0355.16005, MR 0442018, 10.2140/pjm.1977.71.449
Reference: [7] Ke, Y., Cvetković-llić, D. S., Chen, J., Višnjić, J.: New results on $(b,c)$-inverses.Linear Multilinear Algebra 66 (2018), 447-458. Zbl 1427.15005, MR 3760379, 10.1080/03081087.2017.1301362
Reference: [8] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131. Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0
Reference: [9] Rakić, D. S., Dinčić, N. Č., Djordjević, D. S.: Group, Moore-Penrose, core and dual core inverse in rings with involution.Linear Algebra Appl. 463 (2014), 115-133. Zbl 1297.15006, MR 3262392, 10.1016/j.laa.2014.09.003
Reference: [10] Neumann, J. von: On regular rings.Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. Zbl 0015.38802, 10.1073/pnas.22.12.707
Reference: [11] Wang, L., Mosić, D.: The one-sided inverse along two elements in rings.Linear Multilinear Algebra 69 (2021), 2410-2422. Zbl 1469.16075, MR 4301421, 10.1080/03081087.2019.1679073
Reference: [12] Wu, C., Chen, J.: On $(b,c)$-inverses and $(c,b)$-inverses.Commun. Algebra 49 (2021), 4313-4323. Zbl 1509.20087, MR 4296840, 10.1080/00927872.2021.1918701
Reference: [13] Xu, S., Chen, J., Zhang, X.: New characterizations for core inverses in rings with involution.Front. Math. China 12 (2017), 231-246. Zbl 1379.16029, MR 3569676, 10.1007/s11464-016-0591-2
Reference: [14] Zhu, H.: Further results on several types of generalized inverses.Commun. Algebra 46 (2018), 3388-3396. Zbl 1390.16035, MR 3789002, 10.1080/00927872.2017.1412450
Reference: [15] Zhu, H.: The $(b,c)$-core inverse and its dual in semigroups with involution.J. Pure Appl. Algebra 228 (2024), Article ID 107526, 12 pages. Zbl 1545.16036, MR 4641617, 10.1016/j.jpaa.2023.107526
Reference: [16] Zhu, H., Wu, L., Chen, J.: A new class of generalized inverses in semigroups and rings with involution.Commun. Algebra 51 (2023), 2098-2113. Zbl 1535.16046, MR 4561472, 10.1080/00927872.2022.2150771
Reference: [17] Zhu, H., Zhang, X., Chen, J.: Generalized inverses of a factorization in a ring with involution.Linear Algebra Appl. 472 (2015), 142-150. Zbl 1309.15012, MR 3314372, 10.1016/j.laa.2015.01.025
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo