Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$(b,c)$-inverse; core inverse; Drazin inverse
Summary:
We investigate how to give new representations of $(b,c)$-inverses in terms of core inverses and Drazin inverses. Various new criteria and representations of $(b,c)$-inverses in terms of core inverses and Drazin inverses are established from a new perspective. Since Moore-Penrose inverses, pseudo-inverses, core inverses, dual core inverses, and Bott-Duffin $(e, f )$-inverses are the special cases of $(b, c)$-inverses, new characterizations involving these generalized inverses are also established as corollaries of our results.
References:
[1] Azumaya, G.: Strongly $\pi$-regular rings. J. Fac. Sci., Hokkaido Univ., Ser. I 13 (1954), 34-39. DOI 10.14492/hokmj/1530842562 | MR 0067864 | Zbl 0058.02503
[2] Baksalary, O. M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58 (2010), 681-697. DOI 10.1080/03081080902778222 | MR 2722752 | Zbl 1202.15009
[3] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65 (1958), 506-514. DOI 10.1080/00029890.1958.11991949 | MR 0098762 | Zbl 0083.02901
[4] Drazin, M. P.: A class of outer generalized inverses. Linear Algebra Appl. 436 (2012), 1909-1923. DOI 10.1016/j.laa.2011.09.004 | MR 2889966 | Zbl 1254.15005
[5] Han, R., Chen, J.: Generalized inverses of matrices over rings. Chin. Q. J. Math. 7 (1992), 40-47. Zbl 0963.15500
[6] Hartwig, R. E., Luh, J.: A note on the group structure of unit regular ring elements. Pac. J. Math. 71 (1977), 449-461. DOI 10.2140/pjm.1977.71.449 | MR 0442018 | Zbl 0355.16005
[7] Ke, Y., Cvetković-llić, D. S., Chen, J., Višnjić, J.: New results on $(b,c)$-inverses. Linear Multilinear Algebra 66 (2018), 447-458. DOI 10.1080/03081087.2017.1301362 | MR 3760379 | Zbl 1427.15005
[8] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (2001). DOI 10.1007/978-1-4419-8616-0 | MR 1838439 | Zbl 0980.16001
[9] Rakić, D. S., Dinčić, N. Č., Djordjević, D. S.: Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463 (2014), 115-133. DOI 10.1016/j.laa.2014.09.003 | MR 3262392 | Zbl 1297.15006
[10] Neumann, J. von: On regular rings. Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. DOI 10.1073/pnas.22.12.707 | Zbl 0015.38802
[11] Wang, L., Mosić, D.: The one-sided inverse along two elements in rings. Linear Multilinear Algebra 69 (2021), 2410-2422. DOI 10.1080/03081087.2019.1679073 | MR 4301421 | Zbl 1469.16075
[12] Wu, C., Chen, J.: On $(b,c)$-inverses and $(c,b)$-inverses. Commun. Algebra 49 (2021), 4313-4323. DOI 10.1080/00927872.2021.1918701 | MR 4296840 | Zbl 1509.20087
[13] Xu, S., Chen, J., Zhang, X.: New characterizations for core inverses in rings with involution. Front. Math. China 12 (2017), 231-246. DOI 10.1007/s11464-016-0591-2 | MR 3569676 | Zbl 1379.16029
[14] Zhu, H.: Further results on several types of generalized inverses. Commun. Algebra 46 (2018), 3388-3396. DOI 10.1080/00927872.2017.1412450 | MR 3789002 | Zbl 1390.16035
[15] Zhu, H.: The $(b,c)$-core inverse and its dual in semigroups with involution. J. Pure Appl. Algebra 228 (2024), Article ID 107526, 12 pages. DOI 10.1016/j.jpaa.2023.107526 | MR 4641617 | Zbl 1545.16036
[16] Zhu, H., Wu, L., Chen, J.: A new class of generalized inverses in semigroups and rings with involution. Commun. Algebra 51 (2023), 2098-2113. DOI 10.1080/00927872.2022.2150771 | MR 4561472 | Zbl 1535.16046
[17] Zhu, H., Zhang, X., Chen, J.: Generalized inverses of a factorization in a ring with involution. Linear Algebra Appl. 472 (2015), 142-150. DOI 10.1016/j.laa.2015.01.025 | MR 3314372 | Zbl 1309.15012
Partner of
EuDML logo