Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
multilinear fractional integral operator; multilinear fractional maximal operator; homogeneous kernel; Morrey space; Hardy-Littlewood-Sobolev inequality; Olsen-type inequality\looseness -1
Summary:
Let $m\in \mathbb {N}$ and $0<\alpha <mn$. Let $\mathcal {T}_{\Omega ,\alpha ;m}$ be the multilinear fractional integral operator with homogeneous kernels, and let $\mathcal {M}_{\Omega ,\alpha ;m}$ be the multilinear fractional maximal operator with homogeneous kernels. We will use the idea of Hedberg to reprove that the multilinear operators $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1}(\mathbb R^n)\times L^{p_2}(\mathbb R^n) \times \nobreak \cdots \times L^{p_m}(\mathbb R^n)$ into $L^q(\mathbb R^n)$ provided that $\vec {\Omega }=(\Omega _1,\Omega _2,\dots ,\Omega _m)\in [L^s({\bf S}^{n-1})]^{m}$, $s'<p_1,p_2,\dots ,p_m<\infty $, $s'/m<p<n/{\alpha }$, $$ \frac {1}{p}=\frac {1}{p_1}+\frac {1}{p_2}+\cdots +\frac {1}{p_m} \quad \text {and} \quad \frac {1}{q}=\frac {1}{p}-\frac {\alpha }{n}. $$ This result was first obtained by Chen and Xue. We also prove that under the assumptions that $\vec {\Omega }=(\Omega _1,\Omega _2,\dots ,\Omega _m) \in [L^s({\bf S}^{n-1})]^{m}$, $s'\leq p_1,p_2,\dots ,p_m<\infty $, $s'/m\leq p<n/{\alpha }$ and $(*)$, the multilinear operators $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1}(\mathbb R^n)\times L^{p_2}(\mathbb R^n) \times \cdots \times L^{p_m}(\mathbb R^n)$ into $L^{q,\infty }(\mathbb R^n)$, which are completely new. Moreover, we will use the idea of Adams to show that $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1,\kappa }(\mathbb R^n)\times L^{p_2,\kappa }(\mathbb R^n) \times \cdots \times L^{p_m,\kappa }(\mathbb R^n)$ into $L^{q,\kappa }(\mathbb R^n)$ whenever $s'<p_1,p_2,\dots ,p_m<\infty $, $0<\kappa <1$, $s'/m<p<{n(1-\kappa )}/{\alpha }$, $$ \frac {1}{p}=\frac {1}{p_1}+\frac {1}{p_2}+\cdots +\frac {1}{p_m} \quad \text {and} \quad \frac {1}{q}=\frac {1}{p}-\frac {\alpha }{n(1-\kappa )}, $$ and also bounded from $L^{p_1,\kappa }(\mathbb R^n)\times L^{p_2,\kappa }(\mathbb R^n) \times \cdots \times L^{p_m,\kappa }(\mathbb R^n)$ into $WL^{q,\kappa }(\mathbb R^n)$ whenever $s'\leq p_1,p_2,\dots ,p_m<\infty $, $0<\kappa <1$, $s'/m\leq p<{n(1-\kappa )}/{\alpha }$ and $(**)$. These results mentioned above are also completely new. In addition, some new estimates in the limiting cases are also established. Applications to the Hardy-Littlewood-Sobolev and Olsen-type inequalities are discussed as well.
References:
[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. DOI 10.1215/S0012-7094-75-04265-9 | MR 0458158 | Zbl 0336.46038
[2] Adams, D. R.: Morrey Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). DOI 10.1007/978-3-319-26681-7 | MR 3467116 | Zbl 1339.42001
[3] Chanillo, S., Watson, D. K., Wheeden, R. L.: Some integral and maximal operators related to starlike sets. Stud. Math. 107 (1993), 223-255. DOI 10.4064/sm-107-3-223-255 | MR 1247201 | Zbl 0809.42008
[4] Chen, X., Xue, Q.: Weighted estimates for a class of multilinear fractional type operators. J. Math. Anal. Appl. 362 (2010), 355-373. DOI 10.1016/j.jmaa.2009.08.022 | MR 2557692 | Zbl 1200.26023
[5] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Math. Appl., VII. Ser. 7 (1987), 273-279. MR 0985999 | Zbl 0717.42023
[6] Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50 (1998), 29-39. DOI 10.4153/CJM-1998-003-1 | MR 1618714 | Zbl 0905.42010
[7] Ding, Y., Lu, S.: Boundedness of homogeneous fractional integrals on $L^p$ for $n/\alpha{\leq} p\leq\infty$. Nagoya Math. J. 167 (2002), 17-33. DOI 10.1017/S0027763000025411 | MR 1924717 | Zbl 1031.42015
[8] Du, J. L., Wang, H.: A new estimate for homogeneous fractional integral operators on weighted Morrey spaces. Real Anal. Exch 50 (2025), 71-86. DOI 10.14321/realanalexch.1710175844 | MR 4926035 | Zbl 8072284
[9] Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics 29. AMS, Providence (2001). DOI 10.1090/gsm/029 | MR 1800316 | Zbl 0969.42001
[10] Frank, R. L., Lieb, E. H.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. (2) 176 (2012), 349-381. DOI 10.4007/annals.2012.176.1.6 | MR 2925386 | Zbl 1252.42023
[11] Grafakos, L.: On multilinear fractional integrals. Stud. Math. 102 (1992), 49-56. DOI 10.4064/sm-102-1-49-56 | MR 1164632 | Zbl 0808.42014
[12] Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2014). DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1304.42001
[13] Grafakos, L., Kalton, N.: Some remarks on multilinear maps and interpolation. Math. Ann. 319 (2001), 151-180. DOI 10.1007/PL00004426 | MR 1812822 | Zbl 0982.46018
[14] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. DOI 10.1090/S0002-9939-1972-0312232-4 | MR 0312232 | Zbl 0283.26003
[15] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Weighted norm inequalities for multilinear fractional operators on Morrey spaces. Stud. Math. 205 (2011), 139-170. DOI 10.4064/sm205-2-2 | MR 2824893 | Zbl 1234.42012
[16] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Multilinear fractional integrals on Morrey spaces. Acta Math. Sin., Engl. Ser. 28 (2012), 1375-1384. DOI 10.1007/s10114-012-0617-y | MR 2928484 | Zbl 1254.26012
[17] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Sharp bounds for multilinear fractional integral operators on Morrey type spaces. Positivity 16 (2012), 339-358. DOI 10.1007/s11117-011-0129-5 | MR 2929094 | Zbl 1256.42037
[18] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961), 415-426. DOI 10.1002/cpa.3160140317 | MR 0131498 | Zbl 0102.04302
[19] Kenig, C. E., Stein, E. M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6 (1999), 1-15. DOI 10.4310/MRL.1999.v6.n1.a1 | MR 1682725 | Zbl 0952.42005
[20] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282 (2009), 219-231. DOI 10.1002/mana.200610733 | MR 2493512 | Zbl 1160.42008
[21] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. DOI 10.1016/j.aim.2008.10.014 | MR 2483720 | Zbl 1160.42009
[22] Li, K., Moen, K., Sun, W.: Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals. Math. Nachr. 288 (2015), 619-632. DOI 10.1002/mana.201300287 | MR 3338917 | Zbl 1314.42021
[23] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (2) 118 (1983), 349-374. DOI 10.2307/2007032 | MR 0717827 | Zbl 0527.42011
[24] Lieb, E. H., Loss, M.: Analysis. Graduate Studies in Mathematics 14. AMS, Providence (2001). DOI 10.1090/gsm/014 | MR 1817225 | Zbl 0966.26002
[25] Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics. World Scientific, Hackensack (2007). DOI 10.1142/6428 | MR 2354214 | Zbl 1124.42011
[26] Lu, S., Yang, D., Zhou, Z.: Sublinear operators with rough kernel on generalized Morrey spaces. Hokkaido Math. J. 27 (1998), 219-232. DOI 10.14492/hokmj/1351001259 | MR 1608644 | Zbl 0895.42005
[27] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. DOI 10.1007/978-4-431-68168-7_16 | MR 1261439 | Zbl 0771.42007
[28] Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60 (2009), 213-238. DOI 10.1007/BF03191210 | MR 2514845 | Zbl 1172.26319
[29] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. DOI 10.1090/S0002-9947-1938-1501936-8 | MR 1501936 | Zbl 0018.40501
[30] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161 (1971), 249-258. DOI 10.1090/S0002-9947-1971-0285938-7 | MR 0285938 | Zbl 0226.44007
[31] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261-274. DOI 10.1090/S0002-9947-1974-0340523-6 | MR 0340523 | Zbl 0289.26010
[32] Olsen, P. A.: Fractional integration, Morrey spaces and a Schrödinger equation. Commun. Partial Differ. Equations 20 (1995), 2005-2055. DOI 10.1080/03605309508821161 | MR 1361729 | Zbl 0838.35017
[33] Peetre, J.: On the theory of $\mathcal L_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. DOI 10.1016/0022-1236(69)90022-6 | MR 0241965 | Zbl 0175.42602
[34] Pradolini, G.: Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators. J. Math. Anal. Appl. 367 (2010), 640-656. DOI 10.1016/j.jmaa.2010.02.008 | MR 2607287 | Zbl 1198.42011
[35] Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36 (2012), 517-556. DOI 10.1007/s11118-011-9239-8 | MR 2904632 | Zbl 1242.42017
[36] Stein, E. M.: Note on the class $L\log L$. Stud. Math. 32 (1969), 305-310. DOI 10.4064/sm-32-3-305-310 | MR 0247534 | Zbl 0182.47803
[37] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). DOI 10.1515/9781400883882 | MR 0290095 | Zbl 0207.13501
[38] Tang, L.: Endpoint estimates for multilinear fractional integrals. J. Aust. Math. Soc. 84 (2008), 419-429. DOI 10.1017/S1446788708000724 | MR 2453689 | Zbl 1153.42008
[39] Wang, H.: Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces. Acta Math. Sin., Chin. Ser. 56 (2013), 175-186 Chinese. DOI 10.12386/A2013sxxb0018 | MR 3097397 | Zbl 1289.42057
Partner of
EuDML logo