Previous |  Up |  Next

Article

Keywords:
Jacobson radical; $G$-graded ring ($G$ a commutative semigroup)
Summary:
All commutative semigroups $S$ are described such that the Jacobson radical is homogeneous in each ring graded by $S$.
References:
[1] Bergman G.M.: On Jacobson radicals of graded rings. preprint.
[2] Clifford A.H., Preston G.B.: The Algebraic Theory of Semigroups. Vol. 1., Math. Surveys of the Amer. Math. Soc. 7 (1961). MR 0132791 | Zbl 0238.20076
[3] Cohen M., Montgomery S.: Group graded rings, smash products and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258. Addendum: Trans. Amer. Math. Soc. 300 (1987), 810-811. MR 0728711 | Zbl 0533.16001
[4] Cohen M., Rowen L.H.: Group graded rings. Commun. Algebra 11 (1983), 1253-1270. MR 0696990 | Zbl 0522.16001
[5] Jespers E.: On radicals of graded rings. Commun. Algebra 13 (1985), 2457-2472. MR 0807485 | Zbl 0575.16001
[6] Jespers E.: When is the Jacobson radical of a semigroup ring of a commutative semigroup homogeneous?. Commun. Algebra 109 (1987), 549-560. MR 0902968 | Zbl 0619.20045
[7] Jespers E., Krempa J., Puczylowski E.R.: On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854. MR 0674695 | Zbl 0493.16003
[8] Jespers E., Puczylowski E.R.: The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558. MR 1100363 | Zbl 0721.16023
[9] Jespers E., Wauters P.: A description of the Jacobson radical of semigroups rings of commutative semigroup. Group and Semigroup Rings, Johannesburg, 1986, 43-89. MR 0860052
[10] Kelarev A.V.: When is the radical of a band sum of rings homogeneous?. Commun. Algebra 18 (1990), 585-603. MR 1047329 | Zbl 0697.20049
[11] Munn W.D.: On commutative semigroup algebras. Math. Proc. Camb. Phil. Soc. 93 (1983), 237-246. MR 0691992 | Zbl 0528.20053
[12] Okninski J.: On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Camb. Phil. Soc. 99 (1986), 45-50. MR 0809496 | Zbl 0583.20052
[13] Okninski J., Wauters P.: Radicals of semigroup rings of commutative semigroups. Math. Proc. Camb. Phil. Soc. 99 (1986), 435-445. MR 0830356 | Zbl 0599.20104
[14] Puczylowski E.R.: Behaviour of radical properties of rings under some algebraic constructions. Coll. Math. Soc. János Bolyai 38 (1982), 449-480. MR 0899123
[15] Teply M.L., Turman E.G., Quesada A.: On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157-163. MR 0565329 | Zbl 0445.20043
Partner of
EuDML logo