[1] Bergman G.M.: On Jacobson radicals of graded rings. preprint.
[2] Clifford A.H., Preston G.B.:
The Algebraic Theory of Semigroups. Vol. 1., Math. Surveys of the Amer. Math. Soc. 7 (1961).
MR 0132791 |
Zbl 0238.20076
[3] Cohen M., Montgomery S.:
Group graded rings, smash products and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258. Addendum: Trans. Amer. Math. Soc. 300 (1987), 810-811.
MR 0728711 |
Zbl 0533.16001
[6] Jespers E.:
When is the Jacobson radical of a semigroup ring of a commutative semigroup homogeneous?. Commun. Algebra 109 (1987), 549-560.
MR 0902968 |
Zbl 0619.20045
[7] Jespers E., Krempa J., Puczylowski E.R.:
On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854.
MR 0674695 |
Zbl 0493.16003
[8] Jespers E., Puczylowski E.R.:
The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558.
MR 1100363 |
Zbl 0721.16023
[9] Jespers E., Wauters P.:
A description of the Jacobson radical of semigroups rings of commutative semigroup. Group and Semigroup Rings, Johannesburg, 1986, 43-89.
MR 0860052
[10] Kelarev A.V.:
When is the radical of a band sum of rings homogeneous?. Commun. Algebra 18 (1990), 585-603.
MR 1047329 |
Zbl 0697.20049
[11] Munn W.D.:
On commutative semigroup algebras. Math. Proc. Camb. Phil. Soc. 93 (1983), 237-246.
MR 0691992 |
Zbl 0528.20053
[12] Okninski J.:
On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Camb. Phil. Soc. 99 (1986), 45-50.
MR 0809496 |
Zbl 0583.20052
[13] Okninski J., Wauters P.:
Radicals of semigroup rings of commutative semigroups. Math. Proc. Camb. Phil. Soc. 99 (1986), 435-445.
MR 0830356 |
Zbl 0599.20104
[14] Puczylowski E.R.:
Behaviour of radical properties of rings under some algebraic constructions. Coll. Math. Soc. János Bolyai 38 (1982), 449-480.
MR 0899123
[15] Teply M.L., Turman E.G., Quesada A.:
On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157-163.
MR 0565329 |
Zbl 0445.20043