Previous |  Up |  Next

Article

Title: Products and projective limits of function spaces (English)
Author: Kačena, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 547-578
.
Category: math
.
Summary: We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions and we prove that the projective limit of simplicial spaces is simplicial. (English)
Keyword: Choquet theory
Keyword: function space
Keyword: product
Keyword: projective limit
Keyword: simplicial space
MSC: 26B25
MSC: 46A13
MSC: 46A32
MSC: 46A55
MSC: 46E15
MSC: 46M40
idZBL: Zbl 1212.46016
idMR: MR2493938
.
Date available: 2009-05-05T17:13:11Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119746
.
Reference: [1] Alfsen E.M.: Compact Convex Sets and Boundary Integrals.Springer, New York-Heidelberg, 1971. Zbl 0209.42601, MR 0445271
Reference: [2] Batty C.J.K.: Maximal measures on tensor products of compact convex sets.Quart. J. Math. Oxford Ser. (2) 33 (1982), 1-10. Zbl 0439.46008, MR 0689847, 10.1093/qmath/33.1.1
Reference: [3] Behrends E., Wittstock G.: Tensorprodukte kompakter konvexer Mengen.Invent. Math. 10 (1970), 251-266. Zbl 0197.38406, MR 0272693, 10.1007/BF01403252
Reference: [4] Boboc N., Cornea A.: Convex cones of lower semicontinuous functions on compact spaces.Rev. Roumaine Math. Pures Appl. 12 (1967), 471-525. Zbl 0155.17301, MR 0216278
Reference: [5] Bourbaki N.: General Topology. Chapters 1-4.2nd printing, Springer, Berlin, 1989. Zbl 1107.54001, MR 0979294
Reference: [6] Davies E.B., Vincent-Smith G.F.: Tensor products, infinite products, and projective limits of Choquet simplexes.Math. Scand. 22 (1968), 145-164. Zbl 0176.42802, MR 0243316
Reference: [7] Enflo P.: A counterexample to the approximation problem in Banach spaces.Acta Math. 130 (1973), 309-317. Zbl 0267.46012, MR 0402468, 10.1007/BF02392270
Reference: [8] Fremlin D.H.: Measure Theory, vol. 4.Torres Fremlin, 2003. Zbl 1166.28001, MR 2462372
Reference: [9] Grossman M.W.: A Choquet boundary for the product of two compact spaces.Proc. Amer. Math. Soc. 16 (1965), 967-971. Zbl 0139.06702, MR 0180879, 10.1090/S0002-9939-1965-0180879-0
Reference: [10] Grossman M.W.: Limits and colimits in certain categories of spaces of continuous functions.Dissertationes Math. 79 (1970). Zbl 0221.46062, MR 0276740
Reference: [11] Hulanicki A., Phelps R.R.: Some applications of tensor products of partially-ordered linear spaces.J. Funct. Anal. 2 (1968), 177-201. Zbl 0159.41504, MR 0225135, 10.1016/0022-1236(68)90016-5
Reference: [12] Jacobs K.: Measure and Integral.Academic Press, New York-London, 1978. Zbl 0446.28001, MR 0514702
Reference: [13] Jellett F.: Homomorphisms and inverse limits of Choquet simplexes.Math. Z. 103 (1968), 219-226. Zbl 0164.43303, MR 0221278, 10.1007/BF01111040
Reference: [14] Johnson W.B., Lindenstrauss J. (Eds.): Handbook of the Geometry of Banach Spaces.Volume 1, North-Holland, Amsterdam, 2001. Zbl 1013.46001, MR 1863689
Reference: [15] Kačena M., Spurný J.: Affine images of compact convex sets and maximal measures.preprint, available at http://www.karlin.mff.cuni.cz/kma-preprints.
Reference: [16] Lazar A.J.: Affine products of simplexes.Math. Scand. 22 (1968), 165-175. Zbl 0176.42803, MR 0251500
Reference: [17] Lazar A.J.: Spaces of affine continuous functions on simplexes.Trans. Amer. Math. Soc. 134 (1968), 503-525. Zbl 0174.17102, MR 0233188, 10.1090/S0002-9947-1968-0233188-2
Reference: [18] Namioka I., Phelps R.R.: Tensor products of compact convex sets.Pacific J. Math. 31 (1969), 469-480. MR 0271689, 10.2140/pjm.1969.31.469
Reference: [19] Semadeni Z.: Banach spaces of continuous functions. Vol. I..Monografie Matematyczne, Tom 55, PWN-Polish Scientific Publishers, Warszawa, 1971. MR 0296671
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_4.pdf 390.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo