Previous |  Up |  Next

Article

Title: Extending $n$ times differentiable functions of several variables (English)
Author: Fejzić, Hajrudin
Author: Rinne, Dan
Author: Weil, Clifford
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 825-830
Summary lang: English
.
Category: math
.
Summary: It is shown that $n$ times Peano differentiable functions defined on a closed subset of $\mathbb{R}^m$ and satisfying a certain condition on that set can be extended to $n$ times Peano differentiable functions defined on $\mathbb{R}^m$ if and only if the $n$th order Peano derivatives are Baire class one functions. (English)
MSC: 26A21
MSC: 26B05
idZBL: Zbl 1005.26007
idMR: MR1746707
.
Date available: 2009-09-24T10:28:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127531
.
Reference: [ALP1985] V. Aversa, M. Laczkovich, D. Preiss: Extension of differentiable functions.Comment. Math. Univ. Carolin. 26 (1985), 597–609. MR 0817830
Reference: [BW1996] Z. Buczolich and C. E. Weil: Extending Peano differentiable functions.Atti Sem. Mat. Fis. Univ. Modena 44 (1996), no. 2, 323–330. MR 1428765
Reference: [FMW1994] H. Fejzić, J. Mařík and C. E. Weil: Extending Peano derivatives.Math. Bohemica 119 (1994), 387–406. MR 1316592
Reference: [FR1996] H. Fejzić and D. Rinne: Continuity properties of Peano derivatives in several variables.Real Analysis Exch. 21 (1995–96), 292–298. MR 1377538
Reference: [H1962] F. Hausdorff: Set Theory.Chelsea, 1962. MR 0141601
Reference: [J1923] V. Jarník: Sur l’extension du domaine de definition des fonctions d’une variable, qui laisse intacte la derivabitité de la fonction.Bull international de l’Acad Sci de Boheme (1923).
Reference: [M1984] J. Mařík: Derivatives and closed sets.Acta Math. Hungar. 43 (1984), 25–29. MR 0731958, 10.1007/BF01951320
Reference: [PL1974] G. Petruska and M. Lackovich: Baire 1 functions, approximately continuous functions and derivatives.Acta Math. Acad Sci. Hungar. 25 (1974), 189–212. MR 0379766, 10.1007/BF01901760
Reference: [S1970] E. M. Stein: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton, NJ, USA, 1970. Zbl 0207.13501, MR 0290095
.

Files

Files Size Format View
CzechMathJ_49-1999-4_13.pdf 299.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo