Previous |  Up |  Next

Article

Title: On the coefficients of the max-algebraic characteristic polynomial and equation (English)
Author: Butkovič, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [129]-136
Summary lang: English
.
Category: math
.
Summary: No polynomial algorithms are known for finding the coefficients of the characteristic polynomial and characteristic equation of a matrix in max- algebra. The following are proved: (1) The task of finding the max-algebraic characteristic polynomial for permutation matrices encoded using the lengths of their constituent cycles is NP-complete. (2) The task of finding the lowest order finite term of the max-algebraic characteristic polynomial for a $\lbrace 0,-\infty \rbrace $ matrix can be converted to the assignment problem. (3) The task of finding the max-algebraic characteristic equation of a $\lbrace 0,-\infty \rbrace $ matrix can be converted to that of finding the conventional characteristic equation for a $\lbrace 0,1\rbrace $ matrix and thus it is solvable in polynomial time. (English)
Keyword: matrix
Keyword: characteristicpolynomial
Keyword: characteristic equation
MSC: 15A15
MSC: 90C27
MSC: 93C65
idZBL: Zbl 1249.90213
idMR: MR1996551
.
Date available: 2009-09-24T19:51:59Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135515
.
Reference: [1] Ahuja R. K., Magnanti, T., Orlin J. B.: Network Flows: Theory, Algorithms and Applications.Prentice Hall, Englewood Cliffs, N.J. 1993 Zbl 1201.90001, MR 1205775
Reference: [2] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266
Reference: [3] Butkovič P., Murfitt L.: Calculating essential terms of a characteristic maxpolynomial.Central European Journal of Operations Research 8 (2000), 237–246 Zbl 0982.90042, MR 1799201
Reference: [4] Cuninghame–Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer, Berlin 1979 MR 0580321
Reference: [5] Cuninghame–Green R. A.: The characteristic maxpolynomial of a matrix.J. Math. Anal. Appl. 95 (1983), 110-116 Zbl 0526.90098, MR 0710423, 10.1016/0022-247X(83)90139-7
Reference: [6] Klinz B.: Private communication (2002.
Reference: [7] (Ed.) J. van Leeuwen: Handbook of Theoretical Computer Science – Vol.A: Algorithms and Complexity. Elsevier, Amsterdam and MIT Press, Cambridge, MA 1990 Zbl 0714.68001, MR 1127166
Reference: [8] Murfitt L.: Discrete-Event Dynamic Systems in Max-Algebra: Realisation and Related Combinatorial Problems.Thesis. The University of Birmingham, 2000
Reference: [9] Zimmermann U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures (Annals of Discrete Mathematics 10).North Holland, Amsterdam 1981 MR 0609751
.

Files

Files Size Format View
Kybernetika_39-2003-2_3.pdf 1.165Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo