Previous |  Up |  Next

Article

Title: On timed event graph stabilization by output feedback in dioid (English)
Author: Cottenceau, B.
Author: Lhommeau, M.
Author: Hardouin, L.
Author: Boimond, J.-L.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [165]-176
Summary lang: English
.
Category: math
.
Summary: This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input. (English)
Keyword: Time Event Graphs
Keyword: max-plusalgebra
Keyword: feedback synthesis
MSC: 06F05
MSC: 93B25
MSC: 93B52
MSC: 93C65
MSC: 93D15
idZBL: Zbl 1249.93041
idMR: MR1996555
.
Date available: 2009-09-24T19:52:30Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135519
.
Reference: [1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley, New York 1992 Zbl 0824.93003, MR 1204266
Reference: [2] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, Oxford 1972 Zbl 0301.06001, MR 0396359
Reference: [3] Cohen G., Moller P., Quadrat J. P., Viot M.: Linear system theory for discrete-event systems.In: Proc. 23rd IEEE Conference on Decision and Control, Las Vegas 1984
Reference: [4] Cohen G., Moller P., Quadrat J. P., Viot M.: Algebraic tools for the performance evaluation of discrete event systems.IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–58
Reference: [5] Commault C.: Feedback stabilization of some event graph models.IEEE Trans. Automat. Control 43 (1998), 10, 1419–1423 Zbl 0956.93041, MR 1646723, 10.1109/9.720498
Reference: [6] Cottenceau B.: Contribution à la commande de systèmes à événements discrets: synthèse de correcteurs pour les graphes d’événements temporisés dans les dioïdes.Ph.D. Thesis (in French). ISTIA, Université d’Angers 1999
Reference: [7] Cottenceau B., Hardouin L., Boimond J. L., Ferrier J. L.: Synthesis of greatest linear feedback for timed event graphs in dioid.IEEE Trans. Automat. Control 44 (1999), 6, 1258–1262 Zbl 0962.93031, MR 1689147, 10.1109/9.769386
Reference: [8] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes.Ph.D. Thesis (in French). Ecole des Mines de Paris, Paris 1992
Reference: [9] Gaubert S.: Resource optimization and $(\min ,+)$ spectral theory.IEEE Trans. Automat. Control 40 (1992), 11, 1931–1934 MR 1358012, 10.1109/9.471219
Reference: [10] series, Software tools for manipulating periodic: http:--www.istia.univ-angers.fr/$\tilde{}$hardouin/outils.html
Reference: [11] Plus, Max: Second order theory of min-linear systems and its application to discrete event systems.In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991
.

Files

Files Size Format View
Kybernetika_39-2003-2_7.pdf 1.460Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo