Previous |  Up |  Next

Article

Title: Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability (English)
Author: Klimann, Ines
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [177]-192
Summary lang: English
.
Category: math
.
Summary: In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them. (English)
Keyword: idempotent semirings
Keyword: recognizable series
MSC: 13F25
MSC: 93B25
MSC: 93C65
idZBL: Zbl 1249.93043
idMR: MR1996556
.
Date available: 2009-09-24T19:52:37Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135520
.
Reference: [1] Berstel J.: Transductions and Context–Free Languages.Teubner, Stuttgart 1979 Zbl 0424.68040, MR 0549481
Reference: [2] Berstel J., Reutenauer C.: Les séries rationnelles et leurs langages.Masson, Paris 1984. English translation: Rational Series and Their Languages, Springer–Verlag, Berlin 1988 Zbl 0573.68037, MR 0971022
Reference: [3] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, Oxford 1972 Zbl 0301.06001, MR 0396359
Reference: [4] Eilenberg S.: Automata, Languages and Machines, vol.A. Academic Press, New York 1974 Zbl 0359.94067, MR 0530382
Reference: [5] Gunawardena J.: An introduction to idempotency, in idempotency.Chapter 1 (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998 MR 1608370
Reference: [6] Klimann I.: New types of automata to solve fixed point problems.Theoret. Comput. Sci. 259 (2001), 1–2, 183–197 Zbl 0973.68122, MR 1832790, 10.1016/S0304-3975(99)00335-7
Reference: [7] Klimann I.: A solution to the problem of $(A,B)$-invariance for series.Theoret. Comput. Sci. 293 (2003), 1, 115–139 Zbl 1025.68050, MR 1957615, 10.1016/S0304-3975(02)00234-7
Reference: [8] Kobayashi N.: The closure under division and a characterization of the recognizable ${\mathcal Z}$-subsets.RAIRO Inform. Théor. Appl. 30 (1996), 3, 209–230 MR 1415829
Reference: [9] Pin J.-E., Sakarovitch J.: Une application de la représentation matricielle des transductions.Theoret. Comp. Sci. 35 (1985), 271–293 Zbl 0563.68064, MR 0785156, 10.1016/0304-3975(85)90019-2
Reference: [10] Salomaa A., Soittola M.: Automata–Theoretical Aspects of Formal Power Series.Springer–Verlag, Berlin 1978 MR 0483721
.

Files

Files Size Format View
Kybernetika_39-2003-2_8.pdf 1.545Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo