[1] ABIAN A.:
Fixed point theorems of the mappings of partially ordered sets. Rend. Circ. Mat. Palermo (2) 20 (1971), 139-142.
MR 0323650
[2] DAVEY B. A.-PRIESTLEY H. A.:
Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.
MR 1058437 |
Zbl 0701.06001
[3] DUFFUS D.-SAUER N.:
Fixed points of products and the strong fixed point property. Order 4 (1987), 221-231.
MR 0930642 |
Zbl 0651.06001
[4] LI B.-MILNER E. C.:
A chain complete poset with no infinite antichain has a finite core. Oгder 10 (1993), 55-63.
MR 1240710 |
Zbl 0789.06002
[5] LI B.-MILNER E. C.:
From finite posets to chain complete posets having no infinite antichain. Order 12 (1995), 159-171.
MR 1354800 |
Zbl 0835.06001
[8] RODDY M. S.-RUTKOWSKI A.-SCHRÖDER B. S. W.: Fixed points and products: a more general version. Manuscript.
[9] RUTKOWSKI A.:
Multifunctions and the fixed point property for products of ordered sets. Order 2 (1985), 61-67.
MR 0794626 |
Zbl 0591.06007
[10] RUTKOWSKI A.:
The fixed point property for sums of posets. Demonstratio Math. 19 (1986), 1077-1088.
MR 0916114 |
Zbl 0632.06003
[11] SCHRÖDER B. S. W.:
Algorithms for the fixed point property. Theoret. Comput. Sci. 217 (1999), 301-358.
MR 1688618 |
Zbl 0914.68046
[12] SCHRÖDER B. S. W.:
Ordered Sets. An Introduction. Birkhäuser, Boston-Basel-Berlin, 2003.
MR 1944415 |
Zbl 1010.06001