Previous |  Up |  Next

Article

References:
[1] ABIAN A.: Fixed point theorems of the mappings of partially ordered sets. Rend. Circ. Mat. Palermo (2) 20 (1971), 139-142. MR 0323650
[2] DAVEY B. A.-PRIESTLEY H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990. MR 1058437 | Zbl 0701.06001
[3] DUFFUS D.-SAUER N.: Fixed points of products and the strong fixed point property. Order 4 (1987), 221-231. MR 0930642 | Zbl 0651.06001
[4] LI B.-MILNER E. C.: A chain complete poset with no infinite antichain has a finite core. Oгder 10 (1993), 55-63. MR 1240710 | Zbl 0789.06002
[5] LI B.-MILNER E. C.: From finite posets to chain complete posets having no infinite antichain. Order 12 (1995), 159-171. MR 1354800 | Zbl 0835.06001
[6] RODDY M. S.: Fixed points and products. Order 11 (1994), 11-14. MR 1296230 | Zbl 0814.06003
[7] RODDY M. S.: Fixed points and products: width 3. Order 19 (2002), 319-326. MR 1964442 | Zbl 1037.06003
[8] RODDY M. S.-RUTKOWSKI A.-SCHRÖDER B. S. W.: Fixed points and products: a more general version. Manuscript.
[9] RUTKOWSKI A.: Multifunctions and the fixed point property for products of ordered sets. Order 2 (1985), 61-67. MR 0794626 | Zbl 0591.06007
[10] RUTKOWSKI A.: The fixed point property for sums of posets. Demonstratio Math. 19 (1986), 1077-1088. MR 0916114 | Zbl 0632.06003
[11] SCHRÖDER B. S. W.: Algorithms for the fixed point property. Theoret. Comput. Sci. 217 (1999), 301-358. MR 1688618 | Zbl 0914.68046
[12] SCHRÖDER B. S. W.: Ordered Sets. An Introduction. Birkhäuser, Boston-Basel-Berlin, 2003. MR 1944415 | Zbl 1010.06001
Partner of
EuDML logo