Previous |  Up |  Next

Article

Title: Congruences involving the Fermat quotient (English)
Author: Meštrović, Romeo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 949-968
Summary lang: English
.
Category: math
.
Summary: Let $p>3$ be a prime, and let $q_p(2)=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. In this note we prove that $$ \sum _{k=1}^{p-1} \frac {1}{k\cdot 2^k} \equiv q_p(2)-\frac {pq_p(2)^2}{2}+ \frac {p^2 q_p(2)^3}{3} -\frac {7}{48} p^2 B_{p-3}\pmod {p^3}, $$ which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that $$ q_p(2)^3 \equiv -3\sum _{k=1}^{p-1} \frac {2^k}{k^3}+ \frac {7}{16} \sum _{k=1}^{(p-1)/2} \frac {1}{k^3} \pmod {p}, $$ which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $\sum _{k=1}^{p-1}1/(k^2\cdot 2^k)$ modulo $p^2$ that also generalizes a related Sun's congruence modulo $p$. (English)
Keyword: Fermat quotient
Keyword: $n$th harmonic number of order $m$
Keyword: Bernoulli number
MSC: 05A10
MSC: 05A19
MSC: 11A07
MSC: 11B65
idZBL: Zbl 06373954
idMR: MR3165507
DOI: 10.1007/s10587-013-0064-7
.
Date available: 2014-01-28T14:09:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143609
.
Reference: [1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli.J. Number Theory 66 (1997), 29-50. Zbl 0884.11003, MR 1467188, 10.1006/jnth.1997.2162
Reference: [2] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli.Math. Comput. 67 (1998), 843-861. Zbl 1024.11003, MR 1464140, 10.1090/S0025-5718-98-00951-X
Reference: [3] Agoh, T., Skula, L.: The fourth power of the Fermat quotient.J. Number Theory 128 (2008), 2865-2873. Zbl 1195.11009, MR 2457841, 10.1016/j.jnt.2008.06.001
Reference: [4] Cao, H.-Q., Pan, H.: A congruence involving products of $q$-binomial coefficients.J. Number Theory 121 (2006), 224-233. Zbl 1135.11003, MR 2274904, 10.1016/j.jnt.2006.02.004
Reference: [5] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes.Math. Comp. 66 (1997), 433-449. Zbl 0854.11002, MR 1372002, 10.1090/S0025-5718-97-00791-6
Reference: [6] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem.Math. Comput. 64 (1995), 363-392. Zbl 0817.11022, MR 1248969
Reference: [7] Dilcher, K., Skula, L.: The cube of the Fermat quotient.Integers (electronic only) 6 (2006), Paper A24, 12 pages. Zbl 1103.11011, MR 2264839
Reference: [8] Dilcher, K., Skula, L., Slavutskii, I. S., eds.: Bernoulli numbers. Bibliography (1713-1990). Enlarged ed. Queen's Papers in Pure and Applied Mathematics 87.Queen's University Kingston (1991). MR 1119305
Reference: [9] Dobson, J. B.: On Lerch's formula for the Fermat quotient.Preprint, arXiv:1103.3907v3, 2012.
Reference: [10] Dorais, F. G., Klyve, D.: A Wieferich prime search up to $6\cdot 7\times 10^{15}$.J. Integer Seq. (electronic only) 14 (2011), Article 11.9.2, 14 pages. MR 2859986
Reference: [11] Eisenstein, G.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden.Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42 <title>Mathematische Werke. Band II Chelsea Publishing Company New York 705-711 (1975), German.
Reference: [12] Ernvall, R., Metsänkylä, T.: On the $p$-divisibility of Fermat quotients.Math. Comput. 66 (1997), 1353-1365. Zbl 0903.11002, MR 1408373, 10.1090/S0025-5718-97-00843-0
Reference: [13] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$.Quart. J. 31 (1900), 321-353.
Reference: [14] Glaisher, J. W. L.: On the residues of $r^{p-1}$ to modulus $p^2$, $p^3$, etc.Quart. J. 32 (1900), 1-27.
Reference: [15] Granville, A.: Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers.Organic Mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. CMS Conf. Proc. 20 J. Borwein et al. American Mathematical Society Providence (1997), 253-276. Zbl 0903.11005, MR 1483922
Reference: [16] Granville, A.: Some conjectures related to Fermat's Last Theorem.Number Theory. Proceedings of the first conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, Canada, April 17-27, 1988 R. A. Mollin Walter de Gruyter Berlin (1990), 177-192. Zbl 0702.11015, MR 1106660
Reference: [17] Granville, A.: The square of the Fermat quotient.Integers 4 (2004), Paper A22, 3 pages, electronic only. Zbl 1083.11005, MR 2116007
Reference: [18] Jakubec, S.: Note on the congruences $2^{p-1}\equiv 1 \pmod{p^2}$, $3^{p-1}\equiv 1 \pmod{p^2}$, $5^{p-1}\equiv 1 \pmod{p^2}$.Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. Zbl 1024.11002, MR 1822520
Reference: [19] Jakubec, S.: Note on Wieferich's congruence for primes $p\equiv 1\pmod{4 }$.Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. Zbl 0954.11009, MR 1658393, 10.1007/BF02942562
Reference: [20] Jakubec, S.: Connection between Fermat quotients and Euler numbers.Math. Slovaca 58 (2008), 19-30. Zbl 1164.11014, MR 2372823, 10.2478/s12175-007-0052-1
Reference: [21] Kohnen, W.: A simple congruence modulo $p$.Am. Math. Mon. 104 (1997), 444-445. Zbl 0880.11002, MR 1447978, 10.2307/2974738
Reference: [22] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. 39 (1938), 350-360. Zbl 0019.00505, MR 1503412
Reference: [23] Lerch, M.: Zur Theorie des Fermatschen Quotienten $(a^{p-1}-1)/p=q(a)$.Math. Ann. 60 (1905), 471-490 German. MR 1511321, 10.1007/BF01561092
Reference: [24] Meštrović, R.: An extension of Sury's identity and related congruences.Bull. Aust. Math. Soc. 85 (2012), 482-496. Zbl 1273.11033, MR 2924776, 10.1017/S0004972711002826
Reference: [25] Meštrović, R.: An elementary proof of a congruence by Skula and Granville.Arch. Math., Brno 48 (2012), 113-120. Zbl 1259.11006, MR 2946211, 10.5817/AM2012-2-113
Reference: [26] Pan, H.: On a generalization of Carlitz's congruence.Int. J. Mod. Math. 4 (2009), 87-93. Zbl 1247.11025, MR 2508944
Reference: [27] Ribenboim, P.: 13 Lectures on Fermat's Last Theorem.Springer New York (1979). Zbl 0456.10006, MR 0551363
Reference: [28] Skula, L.: A Remark on Mirimanoff polynomials.Comment. Math. Univ. St. Pauli 31 (1982), 89-97. Zbl 0496.10006, MR 0674586
Reference: [29] Skula, L.: Fermat and Wilson quotients for $p$-adic integers.Acta Math. Inform. Univ. Ostrav. 6 (1998), 167-181. Zbl 1025.11001, MR 1822528
Reference: [30] Skula, L.: Fermat's Last theorem and the Fermat quotients.Comment. Math. Univ. St. Pauli 41 (1992), 35-54. Zbl 0753.11016, MR 1166223
Reference: [31] Skula, L.: A note on some relations among special sums of reciprocals modulo $p$.Math. Slovaca 58 (2008), 5-10. Zbl 1164.11001, MR 2372821, 10.2478/s12175-007-0050-3
Reference: [32] Slavutsky, I. S.: Leudesdorf's theorem and Bernoulli numbers.Arch. Math., Brno 35 (1999), 299-303. MR 1744517
Reference: [33] Spivey, M. Z.: Combinatorial sums and finite differences.Discrete Math. 307 (2007), 3130-3146. Zbl 1129.05006, MR 2370116, 10.1016/j.disc.2007.03.052
Reference: [34] Sun, Z. H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials.Discrete Appl. Math. 105 (2000), 193-223. Zbl 0990.11008, MR 1780472, 10.1016/S0166-218X(00)00184-0
Reference: [35] Sun, Z. H.: Congruences involving Bernoulli and Euler numbers.J. Number Theory 128 (2008), 280-312. Zbl 1154.11010, MR 2380322, 10.1016/j.jnt.2007.03.003
Reference: [36] Sun, Z. H.: Five congruences for primes.Fibonacci Q. 40 (2002), 345-351. Zbl 1009.11004, MR 1920576
Reference: [37] Sun, Z. H.: The combinatorial sum $\sum\nolimits_{k=0 , k\equiv r \pmod{m}}^n \binom{n}{k}$ and its applications in number theory II.J. Nanjing Univ., Math. Biq. 10 (1993), 105-118 Chinese. MR 1248315
Reference: [38] Sun, Z. W.: A congruence for primes.Proc. Am. Math. Soc. 123 (1995), 1341-1346. Zbl 0833.11001, MR 1242105, 10.1090/S0002-9939-1995-1242105-X
Reference: [39] Sun, Z. W.: Binomial coefficients, Catalan numbers and Lucas quotients.Sci. China, Math. 53 (2010), 2473-2488. Zbl 1221.11054, MR 2718841, 10.1007/s11425-010-3151-3
Reference: [40] Sun, Z. W.: On the sum $\sum\nolimits_{k\equiv r \pmod{m}} \binom{n}{k}$ and related congruences.Isr. J. Math. 128 (2002), 135-156. MR 1910378, 10.1007/BF02785421
Reference: [41] Sylvester, J. J.: Sur une propriété des nombres premiers qui se ratache au théoreme de Fermat.C. R. Acad. Sci. Paris 52 (1861), 161-163 <title>The Collected Mathematical Papers of James Joseph Sylvester. Volume II (1854-1873). With Two Plates Cambridge University Press Cambridge 229-231 (1908).
Reference: [42] Tauraso, R.: Congruences involving alternating multiple harmonic sums.Electron. J. Comb. 17 (2010), Research Paper R16, 11 pages. Zbl 1222.11006, MR 2587747
Reference: [43] Wieferich, A.: On Fermat's Last Theorem.J. für Math. 136 (1909), 293-302 German.
Reference: [44] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. 5 (1862), 35-39.
.

Files

Files Size Format View
CzechMathJ_63-2013-4_7.pdf 298.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo