[1] Crainic, M.: On the perturbation lemma, and deformations. 2004, ArXiv preprint math.AT/0403266.
[3] Huebschmann, J.: 
On the construction of $A_\infty $-structures. Georgian Math. J. 17 (1) (2010), 161–202. 
MR 2640649 | 
Zbl 1202.55007[4] Keller, B.: 
Introduction to $A_\infty $ algebras and modules. Homology Homotopy Appl. 3 (1) (2001), 1–35. 
MR 1905779[5] Kontsevich, M., Soibelman, Y.: 
Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry. (Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263. 
MR 1882331[6] Lefèvre-Hasegawa, K.: Sur les $A_\infty $ catégories. Ph.D. thesis, Université Paris 7 – Denis Diderot, 2003.
[7] Markl, M.: 
Transferring $A_\infty $ (strongly homotopy associative) structures. Rend. Circ. Mat. Palermo (2) Suppl. (2006), no. 79, 139–151. 
MR 2287133 | 
Zbl 1112.18007[8] Markl, M., Shnider, S., Stasheff, J.D.: 
Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, American Mathematical Society, Providence, Rhode Island, 2002. 
MR 1898414 | 
Zbl 1017.18001[9] Merkulov, S.: 
Strongly Homotopy Algebras of a Kähler Manifold. Internat. Math. Res. Notices (1999), no. 3, 153–164. 
DOI 10.1155/S1073792899000070[10] Prouté, A.: $A_\infty $-structures: Modèles Minimaux de Baues-Lemaire et Kadeishvili et Homologie des Fibrations. Ph.D. thesis, Université Paris 7 – Denis Diderot, 1986.
[11] Weibel, C.A.: 
An introduction to homological algebra. Cambridge University Press, 1995. 
Zbl 0834.18001