Previous |  Up |  Next

Article

Title: Division algebras that generalize Dickson semifields (English)
Author: Thompson, Daniel
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 89-102
Summary lang: English
.
Category: math
.
Summary: We generalize Knuth's construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases. (English)
Keyword: Nonassociative algebras
Keyword: division algebras
Keyword: automorphisms
MSC: 17A35
MSC: 17A36
MSC: 17A60
idZBL: Zbl 07300183
idMR: MR4162923
.
Date available: 2021-03-02T17:16:03Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148685
.
Reference: [1] Brown, C., Pumplün, S.: The automorphisms of Petit's algebras.Communications in Algebra, 46, 2, 2018, 834-849, Taylor & Francis, MR 3764900, 10.1080/00927872.2017.1327598
Reference: [2] Burmester, M.V.D.: On the commutative non-associative division algebras of even order of LE Dickson.Rendiconti di Matematica e delle sue Applicazioni. Serie V, 21, 1962, 143-166, MR 0141692
Reference: [3] Burmester, M.V.D.: On the non-unicity of translation planes over division algebras.Archiv der Mathematik, 15, 1, 1964, 364-370, Springer, MR 0173971, 10.1007/BF01589214
Reference: [4] Cohen, S.D., Ganley, M.J.: Commutative semifields, two dimensional over their middle nuclei.Journal of Algebra, 75, 2, 1982, 373-385, Academic Press, MR 0653897, 10.1016/0021-8693(82)90045-X
Reference: [5] Cordero, M., Wene, G.P.: A survey of finite semifields.Discrete Mathematics, 208, 1999, 125-137, Elsevier, MR 1725526, 10.1016/S0012-365X(99)00068-0
Reference: [6] Dickson, L.E.: On commutative linear algebras in which division is always uniquely possible.Transactions of the American Mathematical Society, 7, 4, 1906, 514-522, JSTOR, MR 1500764, 10.1090/S0002-9947-1906-1500764-6
Reference: [7] Ganley, M.J.: Central weak nucleus semifields.European Journal of Combinatorics, 2, 4, 1981, 339-347, Elsevier, MR 0638409, 10.1016/S0195-6698(81)80041-8
Reference: [8] Hui, A., Tai, Y.K., Wong, P.P.W.: On the autotopism group of the commutative Dickson semifield $K$ and the stabilizer of the Ganley unital embedded in the semifield plane $\Pi (K)$.Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial, 14, 1, 2015, 27-42, Mathematical Sciences Publishers, MR 3450950
Reference: [9] Knus, M., Merkurjev, A., Rost, M., Tignol, J.: The book of involutions.1998, American Mathematical Soc., MR 1632779
Reference: [10] Knuth, D.E.: Finite semifields and projective planes.1963, Dissertation (Ph.D.), California Institute of Technology. MR 2939390
Reference: [11] Schafer, R.D.: An introduction to nonassociative algebras.1995, Dover Publications, MR 1375235
Reference: [12] Thompson, D.: A generalisation of Dickson's commutative division algebras.Communications in Algebra, 48, 9, 2020, 3922-3932, MR 4124670, 10.1080/00927872.2020.1751849
.

Files

Files Size Format View
ActaOstrav_28-2020-2_1.pdf 408.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo