[1] Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P.:
On lower-dimensional models in lubrication. Part A. Common misinterpretations and incorrect usage of the Reynolds equation. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1692-1702 \99999DOI99999 10.1177/1350650120973792 .
DOI 10.1177/1350650120973792
[2] Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P.:
On lower-dimensional models in lubrication. Part B. Derivation of a Reynolds type of equation for incompressible piezo-viscous fluids. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1703-1718.
DOI 10.1177/13506501209738
[3] Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P.:
On flow of power-law fluids between adjacent surfaces: Why is it possible to derive a Reynolds-type equation for pressure-driven flow, but not for shear-driven flow?. Appl. Eng. Sci. 15 (2023), Article ID 100145, 9 pages.
DOI 10.1016/j.apples.2023.100145
[4] Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P.: On lower-dimensional models of thin film flow. Part C. Derivation of a Reynolds type of equation for fluids with temperature and pressure dependent viscosity. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 237 (2023), 514-526 \99999DOI99999 10.1177/135065012211352 .
[5] Ansari, S., Rashid, M. A. I., Waghmare, P. R., Nobes, D. S.: Measurement of the fow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel. SN Appl. Sci. 2 (2020), Article ID 1787, 15 pages \99999DOI99999 10.1007/s42452-020-03561-w .
[6] Bingham, E. C.: Fluidity and Plasticity. McGraw-Hill, New York (1922) .
[7] Blechta, J., Málek, J., Rajagopal, K. R.:
On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 52 (2020), 1232-1289 \99999DOI99999 10.1137/19M1244895 .
MR 4076814 |
Zbl 1432.76075
[8] Boltenhagen, P., Hu, Y., Matthys, E. F., Pine, D. J.: Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 79 (1997), 2359-2362 \99999DOI99999 10.1103/PhysRevLett.79.2359 .
[10] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.:
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), 2756-2801.
DOI 10.1137/110830289 |
MR 3023393 |
Zbl 1256.35074
[11] Diening, L., Kreuzer, C., Süli, E.:
Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013), 984-1015 \99999DOI99999 10.1137/120873133 .
MR 3035482 |
Zbl 1268.76030
[12] Dowson, D.: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4 (1962), 159-170 \99999DOI99999 10.1016/S0020-7403(62)80038-1 .
[13] Fabricius, J., Manjate, S., Wall, P.:
Error estimates for pressure-driven Hele-Shaw flow. Q. Appl. Math. 80 (2022), 575-595 \99999DOI99999 10.1090/qam/1619 .
MR 4453782 |
Zbl 1490.76020
[14] Fabricius, J., Manjate, S., Wall, P.:
On pressure-driven Hele-Shaw flow of power-law fluids. Appl. Anal. 101 (2022), 5107-5137 \99999DOI99999 10.1080/00036811.2021.1880570 .
MR 4475758 |
Zbl 1500.76017
[15] Fabricius, J., Miroshnikova, E., Tsandzana, A., Wall, P.:
Pressure-driven flow in thin domains. Asymptotic Anal. 116 (2020), 1-26 \99999DOI99999 10.3233/ASY-191535 .
MR 4044383 |
Zbl 1442.35335
[16] Farrell, P. E., Gazca-Orozco, P. A.:
An augmented Lagrangian preconditioner for implicitly constituted non-Newtonian incompressible flow. SIAM J. Sci. Comput. 42 (2020), B1329--B1349 \99999DOI99999 10.1137/20M1336618 .
MR 4169754 |
Zbl 1458.65147
[17] Farrell, P. E., Gazca-Orozco, P. A., Süli, E.:
Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation. SIAM J. Numer. Anal. 58 (2020), 757-787 \99999DOI99999 10.1137/19M125738X .
MR 4066569 |
Zbl 1434.76065
[18] Gazca-Orozco, P. A.:
A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow. ESAIM, Math. Model. Numer. Anal. 55 (2021), 2679-2703 \99999DOI99999 10.1051/m2an/2021068 .
MR 4337453 |
Zbl 1483.65182
[19] Grob, M., Heussinger, C., Zippelius, A.: Jamming of frictional particles: A nonequilibrium first-order phase transition. Phys. Rev. E 89 (2014), Article ID 050201, 4 pages \99999DOI99999 10.1103/PhysRevE.89.050201 .
[20] Gustafsson, T., Rajagopal, K. R., Stenberg, R., Videman, J.:
Nonlinear Reynolds equation for hydrodynamic lubrication. Appl. Math. Modelling 39 (2015), 5299-5309 \99999DOI99999 10.1016/j.apm.2015.03.028 .
MR 3354905 |
Zbl 1443.76037
[21] Herschel, W. H., Bulkley, R.:
Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeit. 39 (1926), 291-300 German.
DOI 10.1007/BF01432034
[22] Hu, Y. T., Boltenhagen, P., Matthys, E., Pine, D. J.:
Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase. J. Rheol. 42 (1998), 1209-1226.
DOI 10.1122/1.550917
[23] Hu, Y. T., Boltenhagen, P., Pine, D. J.: Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions. J. Rheol. 42 (1998), 1185-1208 \99999DOI99999 10.1122/1.550926 .
[24] Lanzendörfer, M., Málek, J., Rajagopal, K. R.:
Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing. Meccanica 53 (2018), 209-228 \99999DOI99999 10.1007/s11012-017-0731-0 .
MR 3760916
[26] Roux, C. Le, Rajagopal, K. R.:
Shear flows of a new class of power-law fluids. Appl. Math., Praha 58 (2013), 153-177 \99999DOI99999 10.1007/s10492-013-0008-4 .
MR 3034820 |
Zbl 1274.76039
[27] Málek, J., Průša, V., Rajagopal, K. R.:
Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907-1924 \99999DOI99999 10.1016/j.ijengsci.2010.06.013 .
MR 2778752 |
Zbl 1231.76073
[28] Mari, R., Seto, R., Morris, J. F., Denn, M. M.: Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91 (2015), Article ID 052302, 6 pages \99999DOI99999 10.1103/PhysRevE.91.052302 .
[29] Pereira, B. M. M., Dias, G. A. S., Cal, F. S., Rajagopal, K. R., Videman, J. H.: Lubrication approximation for fluids with shear-dependent viscosity. Fluids 4 (2019), Article ID 98, 17 pages \99999DOI99999 10.3390/fluids4020098 .
[30] Perlácová, T., Průša, V.:
Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216 (2015), 13-21 \99999DOI99999 10.1016/j.jnnfm.2014.12.006 .
MR 3441833
[31] Rajagopal, K. R.:
On implicit constitutive theories. Appl. Math., Praha 48 (2003), 279-319 \99999DOI99999 10.1023/A:1026062615145 .
MR 1994378 |
Zbl 1099.74009
[32] Rajagopal, K. R.:
On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006), 243-249 \99999DOI99999 10.1017/S0022112005008025 .
MR 2263984 |
Zbl 1097.76009
[33] Rajagopal, K. R.: A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids. C. R., Méc., Acad. Sci. Paris 351 (2023), 703-720 \99999DOI99999 10.5802/crmeca.180 .
[34] Spencer, A. J. M.: Theory of invariants. Continuum Physics. Vol. 1 Academic Press, New York (1971), 239-353 \99999DOI99999 10.1016/B978-0-12-240801-4.50008-X .