Previous |  Up |  Next


Title: Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term (English)
Title: Asymptotické vlastnosti řešení jisté diferenciální rovnice třetího řádu s oscilatorickým obnovujícím členem (Czech)
Author: Andres, Ján
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 27
Issue: 1
Year: 1988
Pages: 201-210
Summary lang: Czech
Summary lang: Russian
Category: math
MSC: 34C10
MSC: 34E05
idZBL: Zbl 0701.34070
idMR: MR1039890
Date available: 2009-01-29T15:33:57Z
Last updated: 2012-05-03
Stable URL:
Reference: [1] Swick K. E.: Asymptotic behavior of the solutions of certain third order differential equations.SIAM J. Appl. Math. 19, 1, 1970, 96-102. Zbl 0212.11403, MR 0267212
Reference: [2] Yoshizawa T.: Stability theory by Liapunov's second method.Math. Soc. Japan, Tokyo 1966. MR 0208086
Reference: [3] Andres J.: On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order.Čas.pěst.mat. 3, 1986, 225-229. MR 0853786
Reference: [4] Voráček J.: Über eine nichtlineare Differentialgleichung dritter Ordnung.Czech. Math. J. 20, 95, 1970, 207-219. MR 0259237
Reference: [5] Coppel W. A.: Stability and asymptotic behavior of differential equations.D.C. Heath, Boston 1965. Zbl 0154.09301, MR 0190463
Reference: [б] Barbalat I.: Systèmes ďéquations différencielles ďoscillations non linéaires.Rev. Math. Pures Appl. 4, 2, 1959, 267-270. MR 0111896
Reference: [7] Andres O.: Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms.Czech. Math. J., 36, 1, 1986, 1-6. MR 0822859
Reference: [8] Bakaev, Yu. N.: Synchronization properties of the automatic control phase system of the third order.(in Russian). Radiotekh. Elektron. 10, 6, 1965, 1083-1087.
Reference: [9] Andres O., Štrunc M.: Lagrange-like stability of local cycles to a certain forced phase-locked loop described by the third-order differential equation.To appear in Rev. Roum. Sci.Techn. 32, 2, 1987, 219-223.


Files Size Format View
ActaOlom_27-1988-1_12.pdf 682.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo