Previous |  Up |  Next

Article

Title: Solvability of nonlinear functional boundary value problems (English)
Author: Staněk, Svatoslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 35
Issue: 1
Year: 1996
Pages: 149-158
.
Category: math
.
MSC: 34B15
MSC: 34K10
idZBL: Zbl 0968.34009
idMR: MR1485052
.
Date available: 2009-01-29T15:49:40Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120342
.
Reference: [1] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin-Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [2] Gupta C. P.: Solvability of a three-point boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540-551. MR 1176010
Reference: [3] Gupta C. P.: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277-281. Zbl 0805.34017, MR 1290657
Reference: [4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities.Cambridge Univ. Press, London-New York, 1967.
Reference: [5] Haščák A.: Disconjugacy and multipoint boundary value problems for linear differential equations with delay.Czech. Math. J. 114, 39 (1989), 70-77. Zbl 0689.34058, MR 0983484
Reference: [6] Haščák A.: Tests for disconjugacy and strict disconjugacy of linear differential equations with delays.Czech. Math. J. 114, 39 (1989), 225-231. Zbl 0703.34072, MR 0992129
Reference: [7] Haščák A.: On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay.Arch. Math. (Brno), 26, 4 (1990), 207-214. MR 1188972
Reference: [8] Marano S. A.: A remark on a second-order three-point boundary value problem.J. Math. Anal. Appl. 183 (1994), 518-522. Zbl 0801.34025, MR 1274852
Reference: [9] Mawhin J.: Topological Degree Methods in Nonlinear Boundary Value Problems.In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. Zbl 0414.34025, MR 0525202
Reference: [10] Ricceri O. N., Ricceri B.: An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem.Appl. Anal. 38 (1990), 259-270. MR 1116184
Reference: [11] Staněk S.: On some boundary value problems for second order functional differential equations.Nonlin. Anal. (in press). Zbl 0873.34053
Reference: [12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem.Ann. Math. Silesianae, Katowice (in press).
.

Files

Files Size Format View
ActaOlom_35-1996-1_15.pdf 905.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo