Title:
|
Solvability of nonlinear functional boundary value problems (English) |
Author:
|
Staněk, Svatoslav |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
35 |
Issue:
|
1 |
Year:
|
1996 |
Pages:
|
149-158 |
. |
Category:
|
math |
. |
MSC:
|
34B15 |
MSC:
|
34K10 |
idZBL:
|
Zbl 0968.34009 |
idMR:
|
MR1485052 |
. |
Date available:
|
2009-01-29T15:49:40Z |
Last updated:
|
2012-05-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120342 |
. |
Reference:
|
[1] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin-Heidelberg, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[2] Gupta C. P.: Solvability of a three-point boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540-551. MR 1176010 |
Reference:
|
[3] Gupta C. P.: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277-281. Zbl 0805.34017, MR 1290657 |
Reference:
|
[4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities.Cambridge Univ. Press, London-New York, 1967. |
Reference:
|
[5] Haščák A.: Disconjugacy and multipoint boundary value problems for linear differential equations with delay.Czech. Math. J. 114, 39 (1989), 70-77. Zbl 0689.34058, MR 0983484 |
Reference:
|
[6] Haščák A.: Tests for disconjugacy and strict disconjugacy of linear differential equations with delays.Czech. Math. J. 114, 39 (1989), 225-231. Zbl 0703.34072, MR 0992129 |
Reference:
|
[7] Haščák A.: On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay.Arch. Math. (Brno), 26, 4 (1990), 207-214. MR 1188972 |
Reference:
|
[8] Marano S. A.: A remark on a second-order three-point boundary value problem.J. Math. Anal. Appl. 183 (1994), 518-522. Zbl 0801.34025, MR 1274852 |
Reference:
|
[9] Mawhin J.: Topological Degree Methods in Nonlinear Boundary Value Problems.In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. Zbl 0414.34025, MR 0525202 |
Reference:
|
[10] Ricceri O. N., Ricceri B.: An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem.Appl. Anal. 38 (1990), 259-270. MR 1116184 |
Reference:
|
[11] Staněk S.: On some boundary value problems for second order functional differential equations.Nonlin. Anal. (in press). Zbl 0873.34053 |
Reference:
|
[12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem.Ann. Math. Silesianae, Katowice (in press). |
. |