[2] Gupta C. P.:
Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551.
MR 1176010
[3] Gupta C. P.:
A note on a second order three-point boundary value problem. J. Math. Anal. Appl. 186 (1994), 277-281.
MR 1290657 |
Zbl 0805.34017
[4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. Cambridge Univ. Press, London-New York, 1967.
[5] Haščák A.:
Disconjugacy and multipoint boundary value problems for linear differential equations with delay. Czech. Math. J. 114, 39 (1989), 70-77.
MR 0983484 |
Zbl 0689.34058
[6] Haščák A.:
Tests for disconjugacy and strict disconjugacy of linear differential equations with delays. Czech. Math. J. 114, 39 (1989), 225-231.
MR 0992129 |
Zbl 0703.34072
[7] Haščák A.:
On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay. Arch. Math. (Brno), 26, 4 (1990), 207-214.
MR 1188972
[8] Marano S. A.:
A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522.
MR 1274852 |
Zbl 0801.34025
[9] Mawhin J.:
Topological Degree Methods in Nonlinear Boundary Value Problems. In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979.
MR 0525202 |
Zbl 0414.34025
[10] Ricceri O. N., Ricceri B.:
An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270.
MR 1116184
[11] Staněk S.:
On some boundary value problems for second order functional differential equations. Nonlin. Anal. (in press).
Zbl 0873.34053
[12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem. Ann. Math. Silesianae, Katowice (in press).