Previous |  Up |  Next

Article

References:
[1] Deimling K.: Nonlinear Functional Analysis. Springer, Berlin-Heidelberg, 1985. MR 0787404 | Zbl 0559.47040
[2] Gupta C. P.: Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551. MR 1176010
[3] Gupta C. P.: A note on a second order three-point boundary value problem. J. Math. Anal. Appl. 186 (1994), 277-281. MR 1290657 | Zbl 0805.34017
[4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. Cambridge Univ. Press, London-New York, 1967.
[5] Haščák A.: Disconjugacy and multipoint boundary value problems for linear differential equations with delay. Czech. Math. J. 114, 39 (1989), 70-77. MR 0983484 | Zbl 0689.34058
[6] Haščák A.: Tests for disconjugacy and strict disconjugacy of linear differential equations with delays. Czech. Math. J. 114, 39 (1989), 225-231. MR 0992129 | Zbl 0703.34072
[7] Haščák A.: On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay. Arch. Math. (Brno), 26, 4 (1990), 207-214. MR 1188972
[8] Marano S. A.: A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522. MR 1274852 | Zbl 0801.34025
[9] Mawhin J.: Topological Degree Methods in Nonlinear Boundary Value Problems. In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. MR 0525202 | Zbl 0414.34025
[10] Ricceri O. N., Ricceri B.: An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. MR 1116184
[11] Staněk S.: On some boundary value problems for second order functional differential equations. Nonlin. Anal. (in press). Zbl 0873.34053
[12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem. Ann. Math. Silesianae, Katowice (in press).
Partner of
EuDML logo