Previous |  Up |  Next


Weil algebra; Weil bundle; contact element; natural operator
Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.
[1] R. J. Alonso: Jet manifolds associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195–199. MR 1785036
[2] M. Doupovec and I. Kolář: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205–209. MR 1189217
[3] C. Ehresmann: Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie. (1953), Colloque du C.N.R.S., Strasbourg, 97–110. MR 0063123
[4] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. MR 1295815
[5] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99–106. MR 1766571
[6] I. Kolář: On the natural operators on vector fields. Ann. Glob. Anal. Geom. 6 (1988), 109–117. DOI 10.1007/BF00133034 | MR 0982760
[7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer Verlag, 1993. MR 1202431
[8] I. Kolář and W. M. Mikulski: Contact elements on fibered manifolds. Czechoslovak Math. J 53(128) (2003), 1017–1030. DOI 10.1023/B:CMAJ.0000024538.28153.47 | MR 2018847
[9] M. Kureš: Weil algebras of generalized higher order velocities bundles. Contemp. Math. 288 (2001), 358–362. DOI 10.1090/conm/288/04850 | MR 1871033
[10] W. M. Mikulski: Natural differential operators between some natural bundles. Math. Bohem. 118(2) (1993), 153–161. MR 1223480 | Zbl 0777.58004
[11] A. Morimoto: Prolongations of connections to bundles of infinitely near points. J. Differential Geom. 11 (1976), 479–498. MR 0445422
[12] J. Muñoz, J. Rodrigues and F. J. Muriel: Weil bundles and jet spaces. Czechoslovak Math. J. 50 (2000), 721–748. DOI 10.1023/A:1022408527395 | MR 1792967
[13] J. Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187–196. MR 1764094
[14] A. Weil: Théorie des points sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111–117. MR 0061455
[15] O. Zariski and P. Samuel: Commutative algebra, Vol. II. D. Van Nostrand Company, 1960. MR 0120249
Partner of
EuDML logo