Previous |  Up |  Next


Title: Natural operators lifting vector fields to bundles of Weil contact elements (English)
Author: Kureš, Miroslav
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 855-867
Summary lang: English
Category: math
Summary: Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed. (English)
Keyword: Weil algebra
Keyword: Weil bundle
Keyword: contact element
Keyword: natural operator
MSC: 12D05
MSC: 53A55
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1080.58005
idMR: MR2099999
Date available: 2009-09-24T11:18:17Z
Last updated: 2016-04-07
Stable URL:
Reference: [1] R. J. Alonso: Jet manifolds associated to a Weil bundle.Arch. Math. (Brno) 36 (2000), 195–199. MR 1785036
Reference: [2] M. Doupovec and I. Kolář: Natural affinors on time-dependent Weil bundles.Arch. Math. (Brno) 27 (1991), 205–209. MR 1189217
Reference: [3] C. Ehresmann: Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie.(1953), Colloque du C.N.R.S., Strasbourg, 97–110. MR 0063123
Reference: [4] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1–41. MR 1295815
Reference: [5] I. Kolář: Affine structure on Weil bundles.Nagoya Math. J. 158 (2000), 99–106. MR 1766571
Reference: [6] I. Kolář: On the natural operators on vector fields.Ann. Glob. Anal. Geom. 6 (1988), 109–117. MR 0982760, 10.1007/BF00133034
Reference: [7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer Verlag, 1993. MR 1202431
Reference: [8] I. Kolář and W. M. Mikulski: Contact elements on fibered manifolds.Czechoslovak Math. J 53(128) (2003), 1017–1030. MR 2018847, 10.1023/B:CMAJ.0000024538.28153.47
Reference: [9] M. Kureš: Weil algebras of generalized higher order velocities bundles.Contemp. Math. 288 (2001), 358–362. MR 1871033, 10.1090/conm/288/04850
Reference: [10] W. M. Mikulski: Natural differential operators between some natural bundles.Math. Bohem. 118(2) (1993), 153–161. Zbl 0777.58004, MR 1223480
Reference: [11] A. Morimoto: Prolongations of connections to bundles of infinitely near points.J. Differential Geom. 11 (1976), 479–498. MR 0445422
Reference: [12] J. Muñoz, J. Rodrigues and F. J. Muriel: Weil bundles and jet spaces.Czechoslovak Math. J. 50 (2000), 721–748. MR 1792967, 10.1023/A:1022408527395
Reference: [13] J. Tomáš: On quasijet bundles.Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187–196. MR 1764094
Reference: [14] A. Weil: Théorie des points sur les variétés différentiables.Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111–117. MR 0061455
Reference: [15] O. Zariski and P. Samuel: Commutative algebra, Vol. II.D. Van Nostrand Company, 1960. MR 0120249


Files Size Format View
CzechMathJ_54-2004-4_3.pdf 372.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo