Previous |  Up |  Next


natural bundle; natural operator; Weil bundle
A natural $T$-function on a natural bundle $F$ is a natural operator transforming vector fields on a manifold $M$ into functions on $FM$. For any Weil algebra $A$ satisfying $\dim M \ge {\mathrm width}(A)+1$ we determine all natural $T$-functions on $T^*T^AM$, the cotangent bundle to a Weil bundle $T^AM$.
[1] R. J. Alonso: Jet manifold associated to a Weil bundle. Arch. Math. 36 (2000), 195–199. MR 1785036 | Zbl 1049.58007
[2] I.  Kolář: Covariant approach to natural transformations of Weil functors. Comm. Math. Univ. Carolin. 27 (1986), 723–729. MR 0874666
[3] I. Kolář: On cotagent bundles of some natural bundles. Rend. Circ. Mat. Palermo. Serie II 37 (1994), 115–120. MR 1344006
[4] I. Kolář: On the natural operators on vector fields. Ann. Global Anal. Geometry 6 (1988), 109–117. DOI 10.1007/BF00133034 | MR 0982760
[5] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, , 1993. MR 1202431
[6] I.  Kolář and Z. Radziszewski: Natural transformations of second tangent and cotangent bundles. Czechoslovak Math.  J. 38(113) (1988), 274–279. MR 0946296
[7] W. M. Mikulski: The natural operators lifting vector fields to generalized higher order tangent bundles. Arch. Math. 36 (2000), 207–212. MR 1785038 | Zbl 1049.58010
[8] W. M. Mikulski: The jet prolongations of fibered fibered manifolds and the flow operator. Publ. Math. Debrecen 59 (2000), 441–458. MR 1874443
[9] W. M.  Mikulski: The natural operators lifting vector fields to $(J^r T^* )^*$. Arch. Math. 36 (2000), 255–260. MR 1811169 | Zbl 1049.58011
[10] M. Modugno and G. Stefani: Some results on second tangent and cotangent spaces. Quaderni dell’Università di Lecce (1978), .
[11] F. J. Muriel, J. Munoz and J. Rodriguez: Weil bundles and jet spaces. Arch. Math. (to appear). MR 1792967
[12] J. Tomáš: Natural operators on vector fields on the cotangent bundles of the bundles of $(k,r)$-velocities. Rend. Circ. Mat. Palermo II-54 (1998), 113–124. MR 1662732 | Zbl 0929.58001
[13] J.  Tomáš: Natural $T$-functions on the cotangent bundles bundles of some Weil bundles. Differential Geometry and Applications. Proc. of the Satellite Conf. of ICM in Berlin, Brno, August 10–14, 1998, 1998, pp. 293–302. MR 1708917
[14] J.  Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo. Serie II 63 (2000), 187–196. MR 1764094
Partner of
EuDML logo