Previous |  Up |  Next


Title: Natural $T$-functions on the cotangent bundle of a Weil bundle (English)
Author: Tomáš, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 869-882
Summary lang: English
Category: math
Summary: A natural $T$-function on a natural bundle $F$ is a natural operator transforming vector fields on a manifold $M$ into functions on $FM$. For any Weil algebra $A$ satisfying $\dim M \ge {\mathrm width}(A)+1$ we determine all natural $T$-functions on $T^*T^AM$, the cotangent bundle to a Weil bundle $T^AM$. (English)
Keyword: natural bundle
Keyword: natural operator
Keyword: Weil bundle
MSC: 58A05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1080.58001
idMR: MR2100000
Date available: 2009-09-24T11:18:26Z
Last updated: 2016-04-07
Stable URL:
Reference: [1] R. J. Alonso: Jet manifold associated to a Weil bundle.Arch. Math. 36 (2000), 195–199. Zbl 1049.58007, MR 1785036
Reference: [2] I.  Kolář: Covariant approach to natural transformations of Weil functors.Comm. Math. Univ. Carolin. 27 (1986), 723–729. MR 0874666
Reference: [3] I. Kolář: On cotagent bundles of some natural bundles.Rend. Circ. Mat. Palermo. Serie II 37 (1994), 115–120. MR 1344006
Reference: [4] I. Kolář: On the natural operators on vector fields.Ann. Global Anal. Geometry 6 (1988), 109–117. MR 0982760, 10.1007/BF00133034
Reference: [5] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, , 1993. MR 1202431
Reference: [6] I.  Kolář and Z. Radziszewski: Natural transformations of second tangent and cotangent bundles.Czechoslovak Math.  J. 38(113) (1988), 274–279. MR 0946296
Reference: [7] W. M. Mikulski: The natural operators lifting vector fields to generalized higher order tangent bundles.Arch. Math. 36 (2000), 207–212. Zbl 1049.58010, MR 1785038
Reference: [8] W. M. Mikulski: The jet prolongations of fibered fibered manifolds and the flow operator.Publ. Math. Debrecen 59 (2000), 441–458. MR 1874443
Reference: [9] W. M.  Mikulski: The natural operators lifting vector fields to $(J^r T^* )^*$.Arch. Math. 36 (2000), 255–260. Zbl 1049.58011, MR 1811169
Reference: [10] M. Modugno and G. Stefani: Some results on second tangent and cotangent spaces.Quaderni dell’Università di Lecce (1978), .
Reference: [11] F. J. Muriel, J. Munoz and J. Rodriguez: Weil bundles and jet spaces.Arch. Math. (to appear). MR 1792967
Reference: [12] J. Tomáš: Natural operators on vector fields on the cotangent bundles of the bundles of $(k,r)$-velocities.Rend. Circ. Mat. Palermo II-54 (1998), 113–124. Zbl 0929.58001, MR 1662732
Reference: [13] J.  Tomáš: Natural $T$-functions on the cotangent bundles bundles of some Weil bundles.Differential Geometry and Applications. Proc. of the Satellite Conf. of ICM in Berlin, Brno, August 10–14, 1998, 1998, pp. 293–302. MR 1708917
Reference: [14] J.  Tomáš: On quasijet bundles.Rend. Circ. Mat. Palermo. Serie II 63 (2000), 187–196. MR 1764094


Files Size Format View
CzechMathJ_54-2004-4_4.pdf 350.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo