Previous |  Up |  Next

Article

Title: Affine completeness and wreath product decompositions of lattice ordered group (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 717-723
Summary lang: English
.
Category: math
.
Summary: Let $\Delta $ and $H$ be a nonzero abelian linearly ordered group or a nonzero abelian lattice ordered group, respectively. In this paper we prove that the wreath product of $\Delta $ and $H$ fails to be affine complete. (English)
Keyword: lattice ordered group
Keyword: wreath product
Keyword: affine completeness
MSC: 06F15
idZBL: Zbl 1174.06338
idMR: MR2455933
.
Date available: 2010-07-20T14:02:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140416
.
Reference: [1] Conrad, P.: Lattice Ordered Groups.Tulane University New Orleans (1970). Zbl 0258.06011
Reference: [2] Jakubík, J.: Affine completeness of complete lattice ordered groups.Czechoslovak Math. J. 45 (1995), 571-576. MR 1344522
Reference: [3] Jakubík, J.: On the affine completeness of lattice ordered groups.Czechoslovak Math. J. 54 (2004), 423-429. MR 2059263, 10.1023/B:CMAJ.0000042381.83544.a7
Reference: [4] Jakubík, J.: Affine completeness and lexicographic product decompositions of abelian lattice ordered groups.Czechoslovak Math. J. 55 (2005), 917-922. MR 2184372, 10.1007/s10587-005-0075-0
Reference: [5] Jakubík, J., Csontóová, M.: Affine completeness of projectable lattice ordered groups.Czechoslovak Math. J. 48 (1998), 359-363. MR 1624264, 10.1023/A:1022849823068
Reference: [5] Kaarli, K., Pixley, A. F.: Polynomial Completeness in Algebraic Systems.Chapman-Hall London-New York-Washington (2000). MR 1888967
.

Files

Files Size Format View
CzechMathJ_58-2008-3_10.pdf 222.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo