[1] Banach, S.: 
Théorie des opérations linéaires. Hafner New York (1932). 
Zbl 0005.20901 
[3] Fávaro, V. V.: 
The Fourier-Borel transform between spaces of entire functions of a given type and order. Port. Math. 65 (2008), 285-309. 
DOI 10.4171/PM/1813 | 
MR 2428422 
[4] Fávaro, V. V.: Convolution equations on spaces of quasi-nuclear functions of a given type and order. Preprint.
[5] Floret, K.: 
Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153-188. 
MR 1749787 | 
Zbl 0961.46013 
[6] Gupta, C.: Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2. Université de Sherbrooke Sherbrooke (1969).
[7] Horváth, J.: 
Topological Vector Spaces and Distribuitions. Addison-Wesley Reading (1966). 
MR 0205028 
[8] Malgrange, B.: 
Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355. 
MR 0086990 
[10] Matos, M. C.: 
On the Fourier-Borel transformation and spaces of entire functions in a normed space. In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170. 
DOI 10.1016/S0304-0208(08)70827-2 | 
MR 0771327 | 
Zbl 0568.46036 
[11] Matos, M. C.: 
On convolution operators in spaces of entire functions of a given type and order. In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171. 
DOI 10.1016/S0304-0208(08)72168-6 | 
MR 0893415 | 
Zbl 0658.46016 
[13] Mujica, X.: Aplicações $\tau(p;q)$-somantes e $\sigma(p)$-nucleares. Thesis Universidade Estadual de Campinas (2006).
[15] Pietsch, A.: 
Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. 
MR 0763541 | 
Zbl 0562.47037 
[16] Pietsch, A.: 
Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. 
MR 0763541 | 
Zbl 0562.47037