Previous |  Up |  Next

Article

Title: Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems (English)
Author: Földes, Juraj
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 169-198
Summary lang: English
.
Category: math
.
Summary: In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems. (English)
Keyword: a priori estimates
Keyword: Liouville theorems
Keyword: blow-up rate
Keyword: positive solution
Keyword: indefinite parabolic problem
MSC: 35B09
MSC: 35B44
MSC: 35B45
MSC: 35B53
MSC: 35J61
MSC: 35K59
idZBL: Zbl 1224.35013
idMR: MR2782767
DOI: 10.1007/s10587-011-0005-2
.
Date available: 2011-05-23T12:40:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141526
.
Reference: [1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems.Trans. Am. Math. Soc. 360 (2008), 3493-3539. MR 2386234, 10.1090/S0002-9947-08-04404-8
Reference: [2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. Zbl 0625.35045, MR 0808425
Reference: [3] Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. MR 1145316
Reference: [4] Baras, P., Cohen, L.: Complete blow-up after {$T\sb { max}$} for the solution of a semilinear heat equation.J. Funct. Anal. 71 (1987), 142-174. Zbl 0653.35037, MR 0879705, 10.1016/0022-1236(87)90020-6
Reference: [5] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term.In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). MR 1648222
Reference: [6] Cabré, X.: On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations.Commun. Pure Appl. Math. 48 (1995), 539-570. MR 1329831, 10.1002/cpa.3160480504
Reference: [7] Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations.Adv. Diff. Equ. 10 (2005), 841-860. Zbl 1161.35388, MR 2150868
Reference: [8] Farina, A.: Liouville-type theorems for elliptic problems.Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). Zbl 1191.35128, MR 2569331
Reference: [9] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains.NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. Zbl 0993.35046, MR 1867324, 10.1007/PL00001459
Reference: [10] Fila, M., Souplet, P., Weissler, F. B.: Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions.Math. Ann. 320 (2001), 87-113. MR 1835063, 10.1007/PL00004471
Reference: [11] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations.Indiana Univ. Math. J. 34 (1985), 425-447. Zbl 0576.35068, MR 0783924, 10.1512/iumj.1985.34.34025
Reference: [12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations.Commun. Partial Differ. Equations 6 (1981), 883-901. Zbl 0462.35041, MR 0619749, 10.1080/03605308108820196
Reference: [13] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables.Indiana Univ. Math. J. 36 (1987), 1-40. Zbl 0601.35052, MR 0876989, 10.1512/iumj.1987.36.36001
Reference: [14] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity.Indiana Univ. Math. J. 53 (2004), 483-514. Zbl 1058.35096, MR 2060042, 10.1512/iumj.2004.53.2401
Reference: [15] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain.Math. Methods Appl. Sci. 27 (2004), 1771-1782. Zbl 1066.35043, MR 2087296, 10.1002/mma.562
Reference: [16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics.Springer Berlin (2001). Reprint of the 1998 edition. MR 1814364
Reference: [17] Herrero, M. A., Velázquez, J. J. L.: Blow-up behaviour of one-dimensional semilinear parabolic equations.Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. MR 1220032, 10.1016/S0294-1449(16)30217-7
Reference: [18] Krylov, N. V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7.D. Reidel Publishing Co. Dordrecht (1987). MR 0901759
Reference: [19] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing Co. River Edge, NJ (1996). Zbl 0884.35001, MR 1465184
Reference: [20] López-Gómez, J., Quittner, P.: Complete and energy blow-up in indefinite superlinear parabolic problems.Discrete Contin. Dyn. Syst. 14 (2006), 169-186. MR 2170308
Reference: [21] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16.Birkhäuser Basel (1995). MR 1329547
Reference: [22] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations.Commun. Pure Appl. Math. 51 (1998), 139-196. Zbl 0899.35044, MR 1488298, 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
Reference: [23] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations.In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). MR 2185228, 10.1007/3-7643-7385-7_22
Reference: [24] Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation.Nonlinear Anal. 64 (2006), 1679-1689. MR 2197355
Reference: [25] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems.Duke Math. J. 139 (2007), 555-579. MR 2350853, 10.1215/S0012-7094-07-13935-8
Reference: [26] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations.Indiana Univ. Math. J. 56 (2007), 879-908. MR 2317549, 10.1512/iumj.2007.56.2911
Reference: [27] Quittner, P., Simondon, F.: A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems.J. Math. Anal. Appl. 304 (2005), 614-631. Zbl 1071.35026, MR 2126555, 10.1016/j.jmaa.2004.09.044
Reference: [28] Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks.Birkhäuser Basel (2007). MR 2346798
Reference: [29] Quittner, P., Souplet, P., Winkler, M.: Initial blow-up rates and universal bounds for nonlinear heat equations.J. Differ. Equations 196 (2004), 316-339. Zbl 1044.35027, MR 2028111, 10.1016/j.jde.2003.10.007
Reference: [30] Serrin, J.: Entire solutions of nonlinear Poisson equations.Proc. London. Math. Soc. (3) 24 (1972), 348-366. Zbl 0229.35035, MR 0289961, 10.1112/plms/s3-24.2.348
Reference: [31] Serrin, J.: Entire solutions of quasilinear elliptic equations.J. Math. Anal. Appl. 352 (2009), 3-14. Zbl 1180.35243, MR 2499881, 10.1016/j.jmaa.2008.10.036
Reference: [32] Taliaferro, S. D.: Isolated singularities of nonlinear parabolic inequalities.Math. Ann. 338 (2007), 555-586. Zbl 1120.35003, MR 2317931, 10.1007/s00208-007-0088-0
Reference: [33] Taliaferro, S. D.: Blow-up of solutions of nonlinear parabolic inequalities.Trans. Amer. Math. Soc. 361 (2009), 3289-3302. Zbl 1175.35072, MR 2485427, 10.1090/S0002-9947-09-04770-9
Reference: [34] Weissler, F. B.: Single point blow-up for a semilinear initial value problem.J. Differ. Equations 55 (1984), 204-224. Zbl 0555.35061, MR 0764124, 10.1016/0022-0396(84)90081-0
Reference: [35] Weissler, F. B.: An {$L\sp \infty$} blow-up estimate for a nonlinear heat equation.Commun. Pure Appl. Math. 38 (1985), 291-295. Zbl 0592.35071, MR 0784475, 10.1002/cpa.3160380303
Reference: [36] Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems.Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. Zbl 1180.35147, MR 2495531, 10.1007/s10114-008-5615-8
.

Files

Files Size Format View
CzechMathJ_61-2011-1_14.pdf 376.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo