Title:
|
A note on transitively $D$-spaces (English) |
Author:
|
Peng, Liang-Xue |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
1049-1061 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal F}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal F}$ such that $|V\cap A|\geq \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal T})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal T})$ is a transitively $D$-space. (English) |
Keyword:
|
transitively $D$ |
Keyword:
|
sequential |
Keyword:
|
discretely Lindelöf |
Keyword:
|
$wcs^*$-network |
MSC:
|
54D20 |
MSC:
|
54F99 |
MSC:
|
54G99 |
idZBL:
|
Zbl 1249.54054 |
idMR:
|
MR2886256 |
DOI:
|
10.1007/s10587-011-0047-5 |
. |
Date available:
|
2011-12-16T15:47:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141806 |
. |
Reference:
|
[1] Arhangel'skii, A. V.: $D$-spaces and covering properties.Topology Appl. 146-147 (2005), 437-449. Zbl 1063.54013, MR 2107163 |
Reference:
|
[2] Arhangel'skii, A. V.: $D$-spaces and finite unions.Proc. Am. Math. Soc. 132 (2004), 2163-2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8 |
Reference:
|
[3] Arhangel'skii, A. V.: A generic theorem in the theory of cardinal invariants of topological spaces.Commentat. Math. Univ. Carol. 36 (1995), 303-325. MR 1357532 |
Reference:
|
[4] Arhangel'skii, A. V., Buzyakova, R. Z.: Addition theorems and D-spaces.Commentat. Math. Univ. Carol. 43 (2002), 653-663. Zbl 1090.54017, MR 2045787 |
Reference:
|
[5] Arhangel'skii, A. V., Buzyakova, R. Z.: On linearly Lindelöf and strongly discretely Lindelöf spaces.Proc. Am. Math. Soc. 127 (1999), 2449-2458. Zbl 0930.54003, MR 1487356, 10.1090/S0002-9939-99-04783-8 |
Reference:
|
[6] Borges, C. R., Wehrly, A. C.: A study of $D$-spaces.Topol. Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448 |
Reference:
|
[7] Burke, D. K.: Weak-bases and $D$-spaces.Commentat. Math. Univ. Carol. 48 (2007), 281-289. Zbl 1199.54065, MR 2338096 |
Reference:
|
[8] Buzyakova, R. Z.: On $D$-property of strong $\Sigma$-spaces.Commentat. Math. Univ. Carol. 43 (2002), 493-495. Zbl 1090.54018, MR 1920524 |
Reference:
|
[9] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces.Pac. J. Math. 81 (1979), 371-377. MR 0547605, 10.2140/pjm.1979.81.371 |
Reference:
|
[10] Engelking, R.: General Topology. Sigma Series in Pure Mathematics, Vol. 6, revised ed.Heldermann Berlin (1989). MR 1039321 |
Reference:
|
[11] Gruenhage, G.: A note on $D$-spaces.Topology Appl. 153 (2006), 2229-2240. Zbl 1101.54029, MR 2238727 |
Reference:
|
[12] Gruenhage, G.: Generalized Metric Spaces.In: Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 423-501. Zbl 0555.54015, MR 0776629 |
Reference:
|
[13] Gruenhage, G.: Submeta-Lindelöf implies transitively $D$.Preprint. |
Reference:
|
[14] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers.Pac. J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303 |
Reference:
|
[15] Gruenhage, G.: A survey of $D$-spaces.Contemporary Mathematics 533 L. Babinkostova American Mathematical Society Providence (2011), 13-28. Zbl 1217.54025, MR 2777743, 10.1090/conm/533/10502 |
Reference:
|
[16] Guo, H. F., Junnila, H.: On spaces which are linearly $D$.Topology Appl. 157 (2010), 102-107. Zbl 1180.54009, MR 2556084 |
Reference:
|
[17] Lin, S.: A note on $D$-spaces.Commentat. Math. Univ. Carol. 47 (2006), 313-316. Zbl 1150.54340, MR 2241534 |
Reference:
|
[18] Lin, S.: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press Beijing (2002), Chinese. Zbl 1004.54001, MR 1939779 |
Reference:
|
[19] Lin, S., Tanaka, Y.: Point-countable $k$-networks, closed maps and related results.Topology Appl. 59 (1994), 79-86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5 |
Reference:
|
[20] Pearl, E.: Linearly Lindelöf problems.In: Open Problems in Topology II E. Pearl Elsevier Amsterdam (2007), 225-231. MR 2367385 |
Reference:
|
[21] Peng, L.-X.: On spaces which are $D$, linearly $D$ and transitively $D$.Topology Appl. 157 (2010), 378-384. Zbl 1179.54035, MR 2563288 |
Reference:
|
[22] Peng, L.-X.: The $D$-property of some Lindelöf spaces and related conclusions.Topology Appl. 154 (2007), 469-475. Zbl 1110.54014, MR 2278697, 10.1016/j.topol.2006.06.003 |
Reference:
|
[23] Peng, L.-X.: On linear neighborhood assignments and dually discrete spaces.Topology Appl. 155 (2008), 1867-1874. Zbl 1149.54015, MR 2445309, 10.1016/j.topol.2008.06.005 |
Reference:
|
[24] Peng, L.-X.: A special point-countable family that makes a space to be a $D$-space.Adv. Math. (China) 37 (2008), 724-728. MR 2569541 |
Reference:
|
[25] Peng, L.-X.: A note on $D$-spaces and infinite unions.Topology Appl. 154 (2007), 2223-2227. Zbl 1133.54012, MR 2328005, 10.1016/j.topol.2007.01.020 |
Reference:
|
[26] Peng, L.-X.: On weakly monotonically monolithic spaces.Commentat. Math. Univ. Carol. 51 (2010), 133-142. Zbl 1224.54078, MR 2666085 |
Reference:
|
[27] Peng, L.-X.: A note on transitively $D$ and $D$-spaces.Houston J. Math (to appear). |
Reference:
|
[28] Peng, L.-X., Tall, Franklin D.: A note on linearly Lindelöf spaces and dual properties.Topol. Proc. 32 (2008), 227-237. Zbl 1158.54008, MR 1500084 |
Reference:
|
[29] Siwiec, F.: On defining a space by a weak base.Pac. J. Math. 52 (1974), 233-245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233 |
Reference:
|
[30] L. A. Steen, Jr. J. A. Seebach: Counterexamples in Topology. 2nd edition.Springer New York-Heidelberg-Berlin (1978). MR 0507446 |
Reference:
|
[31] Tkachuk, V. V.: Monolithic spaces and $D$-spaces revisited.Topology Appl. 156 (2009), 840-846. Zbl 1165.54009, MR 2492968, 10.1016/j.topol.2008.11.001 |
. |