Title:
|
Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles (English) |
Author:
|
Brajerčík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
1063-1076 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mu \colon FX \to X$ be a principal bundle of frames with the structure group ${\rm Gl}_{n}(\mathbb R)$. It is shown that the variational problem, defined by ${\rm Gl}_{n}(\mathbb R)$-invariant Lagrangian on $J^{r} FX$, can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations. (English) |
Keyword:
|
Frame bundle |
Keyword:
|
Euler-Lagrange equations |
Keyword:
|
invariant Lagrangian |
Keyword:
|
Euler-Poincaré reduction |
MSC:
|
53C05 |
MSC:
|
53C10 |
MSC:
|
58A20 |
MSC:
|
58E30 |
idZBL:
|
Zbl 1249.53029 |
idMR:
|
MR2886257 |
DOI:
|
10.1007/s10587-011-0048-4 |
. |
Date available:
|
2011-12-16T15:48:36Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141807 |
. |
Reference:
|
[1] Brajerčík, J.: $\mathop Gl_{n}(\mathbb R)$-invariant variational principles on frame bundles.Balkan J. Geom. Appl. 13 (2008), 11-19. MR 2395370 |
Reference:
|
[2] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms.J. Math. Phys. 46 (2005), 1-15. MR 2143003, 10.1063/1.1901323 |
Reference:
|
[3] López, M. Castrillón, Pérez, P. L. García, Ratiu, T. S.: Euler-Poincaré reduction on principal bundles.Lett. Math. Phys. 58 (2001), 167-180. MR 1876252, 10.1023/A:1013303320765 |
Reference:
|
[4] López, M. Castrillón, Pérez, P. L. García, Rodrigo, C.: Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange.Differ. Geom. Appl. 25 (2007), 585-593. MR 2373936, 10.1016/j.difgeo.2007.06.007 |
Reference:
|
[5] López, M. Castrillón, Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler-Poincaré equations.Proc. Am. Math. Soc. 128 (2000), 2155-2164. MR 1662269, 10.1090/S0002-9939-99-05304-6 |
Reference:
|
[6] Dieudonné, J.: Treatise on Analysis. Vol. I.Academic Press New York-London (1969). |
Reference:
|
[7] Pérez, P. L. García: Connections and 1-jet fiber bundles.Rend. Sem. Mat. Univ. Padova 47 (1972), 227-242. MR 0315624 |
Reference:
|
[8] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theory.World Scientific Singapore (1997). Zbl 0913.58001, MR 2001723 |
Reference:
|
[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. 1.Interscience Publishers/John Wiley & Sons New York/London (1963). MR 0152974 |
Reference:
|
[10] Kolář, I.: On the torsion of spaces with connection.Czech. Math. J. 21 (1971), 124-136. MR 0293531 |
Reference:
|
[11] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance.J. Math. Anal. Appl. 49 (1975), 469-476. Zbl 0312.58003, MR 0362398, 10.1016/0022-247X(75)90190-0 |
Reference:
|
[12] Krupka, D.: Local invariants of a linear connection.In: Differential Geometry. Colloq. Math. Soc. János Bolyai, Budapest, 1979, Vol. 31 North Holland Amsterdam (1982), 349-369. Zbl 0513.53038, MR 0706930 |
Reference:
|
[13] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Mathematica 1.University J. E. Purkyně Brno (1990). MR 1108622 |
Reference:
|
[14] Marsden, J. E., Ratiu, T. S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts Applied Mathematics, Vol. 17.Springer New York (1994). MR 1304682, 10.1007/978-1-4612-2682-6 |
Reference:
|
[15] Saunders, D. J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series Vol. 142.Cambridge University Press Cambridge (1989). MR 0989588 |
. |