Previous |  Up |  Next

Article

Title: Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles (English)
Author: Brajerčík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1063-1076
Summary lang: English
.
Category: math
.
Summary: Let $\mu \colon FX \to X$ be a principal bundle of frames with the structure group ${\rm Gl}_{n}(\mathbb R)$. It is shown that the variational problem, defined by ${\rm Gl}_{n}(\mathbb R)$-invariant Lagrangian on $J^{r} FX$, can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations. (English)
Keyword: Frame bundle
Keyword: Euler-Lagrange equations
Keyword: invariant Lagrangian
Keyword: Euler-Poincaré reduction
MSC: 53C05
MSC: 53C10
MSC: 58A20
MSC: 58E30
idZBL: Zbl 1249.53029
idMR: MR2886257
DOI: 10.1007/s10587-011-0048-4
.
Date available: 2011-12-16T15:48:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141807
.
Reference: [1] Brajerčík, J.: $\mathop Gl_{n}(\mathbb R)$-invariant variational principles on frame bundles.Balkan J. Geom. Appl. 13 (2008), 11-19. MR 2395370
Reference: [2] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms.J. Math. Phys. 46 (2005), 1-15. MR 2143003, 10.1063/1.1901323
Reference: [3] López, M. Castrillón, Pérez, P. L. García, Ratiu, T. S.: Euler-Poincaré reduction on principal bundles.Lett. Math. Phys. 58 (2001), 167-180. MR 1876252, 10.1023/A:1013303320765
Reference: [4] López, M. Castrillón, Pérez, P. L. García, Rodrigo, C.: Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange.Differ. Geom. Appl. 25 (2007), 585-593. MR 2373936, 10.1016/j.difgeo.2007.06.007
Reference: [5] López, M. Castrillón, Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler-Poincaré equations.Proc. Am. Math. Soc. 128 (2000), 2155-2164. MR 1662269, 10.1090/S0002-9939-99-05304-6
Reference: [6] Dieudonné, J.: Treatise on Analysis. Vol. I.Academic Press New York-London (1969).
Reference: [7] Pérez, P. L. García: Connections and 1-jet fiber bundles.Rend. Sem. Mat. Univ. Padova 47 (1972), 227-242. MR 0315624
Reference: [8] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theory.World Scientific Singapore (1997). Zbl 0913.58001, MR 2001723
Reference: [9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. 1.Interscience Publishers/John Wiley & Sons New York/London (1963). MR 0152974
Reference: [10] Kolář, I.: On the torsion of spaces with connection.Czech. Math. J. 21 (1971), 124-136. MR 0293531
Reference: [11] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance.J. Math. Anal. Appl. 49 (1975), 469-476. Zbl 0312.58003, MR 0362398, 10.1016/0022-247X(75)90190-0
Reference: [12] Krupka, D.: Local invariants of a linear connection.In: Differential Geometry. Colloq. Math. Soc. János Bolyai, Budapest, 1979, Vol. 31 North Holland Amsterdam (1982), 349-369. Zbl 0513.53038, MR 0706930
Reference: [13] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Mathematica 1.University J. E. Purkyně Brno (1990). MR 1108622
Reference: [14] Marsden, J. E., Ratiu, T. S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts Applied Mathematics, Vol. 17.Springer New York (1994). MR 1304682, 10.1007/978-1-4612-2682-6
Reference: [15] Saunders, D. J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series Vol. 142.Cambridge University Press Cambridge (1989). MR 0989588
.

Files

Files Size Format View
CzechMathJ_61-2011-4_16.pdf 290.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo