Previous |  Up |  Next

Article

Title: The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$ (English)
Author: Jena, Susil Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 369-374
Summary lang: English
.
Category: math
.
Summary: Each of the Diophantine equations $A^4 \pm nB^3 = C^2$ has an infinite number of integral solutions $(A, B, C)$ for any positive integer $n$. In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when $A$, $B$ and $C$ are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions $(A, B, C)$ of the Diophantine equation $aA^3 + cB^3 = C^2$ for any co-prime integer pair $(a,c)$. (English)
Keyword: method of infinite ascent
Keyword: Diophantine equation $A^4 \pm nB^3 = C^2$
MSC: 11D41
MSC: 11D72
idZBL: Zbl 06236416
idMR: MR3073963
DOI: 10.1007/s10587-013-0022-4
.
Date available: 2013-07-18T14:51:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143317
.
Reference: [1] Beukers, F.: The Diophantine equation $Ax^p + By^q = Cz^r$.Duke Math. J. 91 (1998), 61-88. MR 1487980, 10.1215/S0012-7094-98-09105-0
Reference: [2] Jena, S. K.: Method of infinite ascent applied on $A^4 \pm nB^2 = C^3$.Math. Stud. 78 (2009), 233-238. MR 2779731
Reference: [3] Jena, S. K.: Method of infinite ascent applied on $mA^3 + nB^3 = C^2$.Math. Stud. 79 (2010), 187-192. MR 2906833
.

Files

Files Size Format View
CzechMathJ_63-2013-2_4.pdf 213.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo