Title:
|
The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ (English) |
Author:
|
Yang, Hai |
Author:
|
Fu, Ruiqin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
375-383 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points. (English) |
Keyword:
|
elliptic curve |
Keyword:
|
integral point |
Keyword:
|
quadratic diophantine equation |
MSC:
|
11D25 |
MSC:
|
11G05 |
MSC:
|
14G05 |
idZBL:
|
Zbl 06236417 |
idMR:
|
MR3073964 |
DOI:
|
10.1007/s10587-013-0023-3 |
. |
Date available:
|
2013-07-18T14:52:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143318 |
. |
Reference:
|
[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$.J. Lond. Math. Soc. 43 (1968), 1-9. Zbl 0157.09801, MR 0231783, 10.1112/jlms/s1-43.1.1 |
Reference:
|
[2] He, Y., Zhang, W.: An elliptic curve having large integral points.Czech. Math. J. 60 (2010), 1101-1107. Zbl 1224.11051, MR 2738972, 10.1007/s10587-010-0075-6 |
Reference:
|
[3] Mordell, L. J.: Diophantine Equations.Pure and Applied Mathematics 30. Academic Press, London (1969). Zbl 0188.34503, MR 0249355 |
Reference:
|
[4] Petr, K.: On Pell's equation.Čas. Mat. Fys. 56 (1927), Czech, French abstract 57-66. |
Reference:
|
[5] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: Reflections and an improvement.Exp. Math. 8 (1999), 135-149. Zbl 0979.11060, MR 1700575, 10.1080/10586458.1999.10504395 |
Reference:
|
[6] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation.Math. Comput. 72 (2003), 1917-1933. Zbl 1089.11019, MR 1986812, 10.1090/S0025-5718-03-01497-2 |
Reference:
|
[7] Togbé, A., Voutier, P. M., Walsh, P. G.: Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$.Acta Arith. 120 (2005), 39-58. MR 2189717 |
Reference:
|
[8] Walker, D. T.: On the Diophantine equation $mX^2-nY^2=\pm1$.Am. Math. Mon. 74 (1967), 504-513. MR 0211954, 10.1080/00029890.1967.11999992 |
Reference:
|
[9] Walsh, P. G.: A note on a theorem of Ljunggren and the diophantine equations $x^2-kxy^2+y^4=1,4$.Arch. Math. 73 (1999), 119-125. MR 1703679, 10.1007/s000130050376 |
Reference:
|
[10] Zagier, D.: Large integral points on elliptic curves.Math. Comput. 48 (1987), 425-436. Zbl 0611.10008, MR 0866125, 10.1090/S0025-5718-1987-0866125-3 |
Reference:
|
[11] Zhu, H., Chen, J.: Integral points on $y^2=x^3+27x-62$.J. Math. Study 42 (2009), 117-125. MR 2541721 |
. |