Title:
|
Totally reflexive modules with respect to a semidualizing bimodule (English) |
Author:
|
Zhang, Zhen |
Author:
|
Zhu, Xiaosheng |
Author:
|
Yan, Xiaoguang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
385-402 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting. (English) |
Keyword:
|
semidualizing bimodule |
Keyword:
|
totally reflexive module |
Keyword:
|
Bass class |
Keyword:
|
precover |
Keyword:
|
preenvelope |
MSC:
|
16D20 |
MSC:
|
16D40 |
MSC:
|
16E05 |
MSC:
|
16E10 |
MSC:
|
16E30 |
idZBL:
|
Zbl 06236418 |
idMR:
|
MR3073965 |
DOI:
|
10.1007/s10587-013-0024-2 |
. |
Date available:
|
2013-07-18T14:54:13Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143319 |
. |
Reference:
|
[1] Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L.: Anneaux de Gorenstein, et Torsion en Algèbre Commutative.Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French. |
Reference:
|
[2] Auslander, M., Bridger, M.: Stable Module Theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685 |
Reference:
|
[3] Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules.J. Math. Kyoto Univ. 45 (2005), 287-306. Zbl 1096.16001, MR 2161693, 10.1215/kjm/1250281991 |
Reference:
|
[4] Christensen, L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics 1747, Springer, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103984 |
Reference:
|
[5] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007 |
Reference:
|
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146 |
Reference:
|
[7] Foxby, H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 267-284. MR 0327752, 10.7146/math.scand.a-11434 |
Reference:
|
[8] Golod, E. S.: G-dimension and generalized perfect ideals.Tr. Mat. Inst. Steklova 165 (1984), 62-66. Zbl 0577.13008, MR 0752933 |
Reference:
|
[9] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007 |
Reference:
|
[10] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. MR 2203625, 10.1016/j.jpaa.2005.07.010 |
Reference:
|
[11] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs.J. Commut. Algebra 1 (2009), 621-633. MR 2575834, 10.1216/JCA-2009-1-4-621 |
Reference:
|
[12] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289 |
Reference:
|
[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules.J. Algebra 278 (2004), 532-552. Zbl 1075.16006, MR 2071651, 10.1016/j.jalgebra.2004.03.023 |
Reference:
|
[14] Sather-Wagstaff, S.: Semidualizing modules and the divisor class group.Ill. J. Math. 51 255-285 (2007). Zbl 1127.13007, MR 2346197, 10.1215/ijm/1258735335 |
Reference:
|
[15] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules.Algebr. Represent. Theory 14 403-428 (2011). MR 2785915, 10.1007/s10468-009-9195-9 |
Reference:
|
[16] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules.J. Algebra 324 (2010), 2336-2368. Zbl 1207.13009, MR 2684143, 10.1016/j.jalgebra.2010.07.007 |
Reference:
|
[17] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules.Math. Z. 264 (2010), 571-600. Zbl 1190.13007, MR 2591820, 10.1007/s00209-009-0480-4 |
Reference:
|
[18] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121 |
Reference:
|
[19] Vasconcelos, W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). Zbl 0296.13005, MR 0498530 |
Reference:
|
[20] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property.J. Algebra 275 (2004), 3-39. Zbl 1076.16006, MR 2047438, 10.1016/j.jalgebra.2003.12.008 |
Reference:
|
[21] White, D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra 2 (2010), 111-137. MR 2607104, 10.1216/JCA-2010-2-1-111 |
Reference:
|
[22] Yassemi, S.: $G$-dimension.Math. Scand. 77 (1995), 161-174. Zbl 0864.13010, MR 1379262 |
. |