Previous |  Up |  Next

Article

Title: Totally reflexive modules with respect to a semidualizing bimodule (English)
Author: Zhang, Zhen
Author: Zhu, Xiaosheng
Author: Yan, Xiaoguang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 385-402
Summary lang: English
.
Category: math
.
Summary: Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting. (English)
Keyword: semidualizing bimodule
Keyword: totally reflexive module
Keyword: Bass class
Keyword: precover
Keyword: preenvelope
MSC: 16D20
MSC: 16D40
MSC: 16E05
MSC: 16E10
MSC: 16E30
idZBL: Zbl 06236418
idMR: MR3073965
DOI: 10.1007/s10587-013-0024-2
.
Date available: 2013-07-18T14:54:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143319
.
Reference: [1] Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L.: Anneaux de Gorenstein, et Torsion en Algèbre Commutative.Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French.
Reference: [2] Auslander, M., Bridger, M.: Stable Module Theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685
Reference: [3] Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules.J. Math. Kyoto Univ. 45 (2005), 287-306. Zbl 1096.16001, MR 2161693, 10.1215/kjm/1250281991
Reference: [4] Christensen, L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics 1747, Springer, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103984
Reference: [5] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007
Reference: [6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146
Reference: [7] Foxby, H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 267-284. MR 0327752, 10.7146/math.scand.a-11434
Reference: [8] Golod, E. S.: G-dimension and generalized perfect ideals.Tr. Mat. Inst. Steklova 165 (1984), 62-66. Zbl 0577.13008, MR 0752933
Reference: [9] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [10] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. MR 2203625, 10.1016/j.jpaa.2005.07.010
Reference: [11] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs.J. Commut. Algebra 1 (2009), 621-633. MR 2575834, 10.1216/JCA-2009-1-4-621
Reference: [12] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289
Reference: [13] Mantese, F., Reiten, I.: Wakamatsu tilting modules.J. Algebra 278 (2004), 532-552. Zbl 1075.16006, MR 2071651, 10.1016/j.jalgebra.2004.03.023
Reference: [14] Sather-Wagstaff, S.: Semidualizing modules and the divisor class group.Ill. J. Math. 51 255-285 (2007). Zbl 1127.13007, MR 2346197, 10.1215/ijm/1258735335
Reference: [15] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules.Algebr. Represent. Theory 14 403-428 (2011). MR 2785915, 10.1007/s10468-009-9195-9
Reference: [16] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules.J. Algebra 324 (2010), 2336-2368. Zbl 1207.13009, MR 2684143, 10.1016/j.jalgebra.2010.07.007
Reference: [17] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules.Math. Z. 264 (2010), 571-600. Zbl 1190.13007, MR 2591820, 10.1007/s00209-009-0480-4
Reference: [18] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121
Reference: [19] Vasconcelos, W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). Zbl 0296.13005, MR 0498530
Reference: [20] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property.J. Algebra 275 (2004), 3-39. Zbl 1076.16006, MR 2047438, 10.1016/j.jalgebra.2003.12.008
Reference: [21] White, D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra 2 (2010), 111-137. MR 2607104, 10.1216/JCA-2010-2-1-111
Reference: [22] Yassemi, S.: $G$-dimension.Math. Scand. 77 (1995), 161-174. Zbl 0864.13010, MR 1379262
.

Files

Files Size Format View
CzechMathJ_63-2013-2_6.pdf 320.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo