Previous |  Up |  Next

Article

Title: Close cohomologous Morse forms with compact leaves (English)
Author: Gelbukh, Irina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 515-528
Summary lang: English
.
Category: math
.
Summary: We study the topology of foliations of close cohomologous Morse forms (smooth closed 1-forms with non-degenerate singularities) on a smooth closed oriented manifold. We show that if a closed form has a compact leave $\gamma $, then any close cohomologous form has a compact leave close to $\gamma $. Then we prove that the set of Morse forms with compactifiable foliations (foliations with no locally dense leaves) is open in a cohomology class, and the number of homologically independent compact leaves does not decrease under small perturbation of the form; moreover, for generic forms (Morse forms with each singular leaf containing a unique singularity; the set of generic forms is dense in the space of closed 1-forms) this number is locally constant. (English)
Keyword: Morse form foliation
Keyword: compact leaf
Keyword: cohomology class
MSC: 57R30
MSC: 58E05
MSC: 58K65
idZBL: Zbl 06236428
idMR: MR3073975
DOI: 10.1007/s10587-013-0034-0
.
Date available: 2013-07-18T15:06:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143329
.
Reference: [1] Arnoux, P., Levitt, G.: Sur l'unique ergodicité des 1-formes fermées singulières (Unique ergodicity of closed singular 1-forms).Invent. Math. 84 (1986), 141-156 French. Zbl 0577.58021, MR 0830042, 10.1007/BF01388736
Reference: [2] Farber, M.: Topology of Closed One-Forms.Mathematical Surveys and Monographs 108. AMS, Providence, RI (2004). Zbl 1052.58016, MR 2034601
Reference: [3] Farber, M., Katz, G., Levine, J.: Morse theory of harmonic forms.Topology 37 (1998), 469-483. Zbl 0911.58001, MR 1604870, 10.1016/S0040-9383(97)82730-9
Reference: [4] Gelbukh, I.: Presence of minimal components in a Morse form foliation.Differ. Geom. Appl. 22 (2005), 189-198. Zbl 1070.57016, MR 2122742, 10.1016/j.difgeo.2004.10.006
Reference: [5] Gelbukh, I.: Ranks of collinear Morse forms.J. Geom. Phys. 61 (2011), 425-435. Zbl 1210.57027, MR 2746127, 10.1016/j.geomphys.2010.10.010
Reference: [6] Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. 2nd corr. printing.Graduate Texts in Mathematics, 14. Springer, New York (1980). Zbl 0434.58001, MR 0341518
Reference: [7] Hirsch, M. W.: Smooth regular neighborhoods.Ann. Math. (2) 76 (1962), 524-530. Zbl 0151.32604, MR 0149492, 10.2307/1970372
Reference: [8] Hirsch, M. W.: Differential Topology.Graduate Texts in Mathematics, 33. Springer, New York (1976). Zbl 0356.57001, MR 1336822
Reference: [9] Levitt, G.: 1-formes fermées singulières et groupe fondamental.Invent. Math. 88 (1987), 635-667 French. Zbl 0594.57014, MR 0884804, 10.1007/BF01391835
Reference: [10] Levitt, G.: Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie (Fundamental group of the leaf space of foliations without holonomy).French J. Differ. Geom. 31 (1990), 711-761. Zbl 0714.57016, MR 1053343, 10.4310/jdg/1214444632
Reference: [11] Pedersen, E. K.: Regular neighborhoods in topological manifolds.Mich. Math. J. 24 (1977), 177-183. Zbl 0372.57010, MR 0482775, 10.1307/mmj/1029001881
.

Files

Files Size Format View
CzechMathJ_63-2013-2_16.pdf 300.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo