Title:
|
Rings of constants of generic 4D Lotka-Volterra systems (English) |
Author:
|
Zieliński, Janusz |
Author:
|
Ossowski, Piotr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
529-538 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems have various applications in such branches of science as population biology and plasma physics, among many others. (English) |
Keyword:
|
Lotka-Volterra derivation |
Keyword:
|
polynomial constant |
Keyword:
|
polynomial first integral |
Keyword:
|
Darboux polynomial |
MSC:
|
12H05 |
MSC:
|
13N15 |
MSC:
|
34A34 |
MSC:
|
92D25 |
idZBL:
|
Zbl 06236429 |
idMR:
|
MR3073976 |
DOI:
|
10.1007/s10587-013-0035-z |
. |
Date available:
|
2013-07-18T15:07:40Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143330 |
. |
Reference:
|
[1] Bogoyavlenskij, O. I.: Algebraic constructions of integrable dynamical systems: extension of the Volterra system.Russ. Math. Surv. 46 (1991), 1-64 translation from Usp. Mat. Nauk 46 (1991), 3-48 Russian. MR 1134089 |
Reference:
|
[2] Jędrzejewicz, P.: Positive characteristic analogs of closed polynomials.Cent. Eur. J. Math. 9 (2011), 50-56. Zbl 1211.12005, MR 2753881, 10.2478/s11533-010-0091-7 |
Reference:
|
[3] Kuroda, S.: Fields defined by locally nilpotent derivations and monomials.J. Algebra 293 (2005), 395-406. Zbl 1131.13022, MR 2172346, 10.1016/j.jalgebra.2005.06.011 |
Reference:
|
[4] Ollagnier, J. Moulin: Polynomial first integrals of the Lotka-Volterra system.Bull. Sci. Math. 121 (1997), 463-476. MR 1477795 |
Reference:
|
[5] Moulin-Ollagnier, J., Nowicki, A.: Polynomial algebra of constants of the Lotka-Volterra system.Colloq. Math. 81 (1999), 263-270. Zbl 1004.12004, MR 1715350, 10.4064/cm-81-2-263-270 |
Reference:
|
[6] Nowicki, A.: Polynomial Derivations and Their Rings of Constants.Uniwersytet Mikołaja Kopernika, Toruń (1994). Zbl 1236.13023, MR 2553232 |
Reference:
|
[7] Nowicki, A., Nagata, M.: Rings of constants for $k$-derivations in $k[x_1,\ldots,x_n]$.J. Math. Kyoto Univ. 28 (1988), 111-118. MR 0929212, 10.1215/kjm/1250520561 |
Reference:
|
[8] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations.J. Algebra 302 (2006), 387-418. Zbl 1119.13021, MR 2236608, 10.1016/j.jalgebra.2006.02.034 |
Reference:
|
[9] Ossowski, P., Zieliński, J.: Polynomial algebra of constants of the four variable Lotka-Volterra system.Colloq. Math. 120 (2010), 299-309. Zbl 1207.13016, MR 2672276, 10.4064/cm120-2-9 |
Reference:
|
[10] Zieliński, J.: Factorizable derivations and ideals of relations.Commun. Algebra 35 (2007), 983-997. Zbl 1171.13013, MR 2305245, 10.1080/00927870601117639 |
Reference:
|
[11] Zieliński, J.: The five-variable Volterra system.Cent. Eur. J. Math. 9 (2011), 888-896. Zbl 1236.13024, MR 2805320, 10.2478/s11533-011-0032-0 |
. |