Previous |  Up |  Next

Article

Title: Rings of constants of generic 4D Lotka-Volterra systems (English)
Author: Zieliński, Janusz
Author: Ossowski, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 529-538
Summary lang: English
.
Category: math
.
Summary: We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems have various applications in such branches of science as population biology and plasma physics, among many others. (English)
Keyword: Lotka-Volterra derivation
Keyword: polynomial constant
Keyword: polynomial first integral
Keyword: Darboux polynomial
MSC: 12H05
MSC: 13N15
MSC: 34A34
MSC: 92D25
idZBL: Zbl 06236429
idMR: MR3073976
DOI: 10.1007/s10587-013-0035-z
.
Date available: 2013-07-18T15:07:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143330
.
Reference: [1] Bogoyavlenskij, O. I.: Algebraic constructions of integrable dynamical systems: extension of the Volterra system.Russ. Math. Surv. 46 (1991), 1-64 translation from Usp. Mat. Nauk 46 (1991), 3-48 Russian. MR 1134089
Reference: [2] Jędrzejewicz, P.: Positive characteristic analogs of closed polynomials.Cent. Eur. J. Math. 9 (2011), 50-56. Zbl 1211.12005, MR 2753881, 10.2478/s11533-010-0091-7
Reference: [3] Kuroda, S.: Fields defined by locally nilpotent derivations and monomials.J. Algebra 293 (2005), 395-406. Zbl 1131.13022, MR 2172346, 10.1016/j.jalgebra.2005.06.011
Reference: [4] Ollagnier, J. Moulin: Polynomial first integrals of the Lotka-Volterra system.Bull. Sci. Math. 121 (1997), 463-476. MR 1477795
Reference: [5] Moulin-Ollagnier, J., Nowicki, A.: Polynomial algebra of constants of the Lotka-Volterra system.Colloq. Math. 81 (1999), 263-270. Zbl 1004.12004, MR 1715350, 10.4064/cm-81-2-263-270
Reference: [6] Nowicki, A.: Polynomial Derivations and Their Rings of Constants.Uniwersytet Mikołaja Kopernika, Toruń (1994). Zbl 1236.13023, MR 2553232
Reference: [7] Nowicki, A., Nagata, M.: Rings of constants for $k$-derivations in $k[x_1,\ldots,x_n]$.J. Math. Kyoto Univ. 28 (1988), 111-118. MR 0929212, 10.1215/kjm/1250520561
Reference: [8] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations.J. Algebra 302 (2006), 387-418. Zbl 1119.13021, MR 2236608, 10.1016/j.jalgebra.2006.02.034
Reference: [9] Ossowski, P., Zieliński, J.: Polynomial algebra of constants of the four variable Lotka-Volterra system.Colloq. Math. 120 (2010), 299-309. Zbl 1207.13016, MR 2672276, 10.4064/cm120-2-9
Reference: [10] Zieliński, J.: Factorizable derivations and ideals of relations.Commun. Algebra 35 (2007), 983-997. Zbl 1171.13013, MR 2305245, 10.1080/00927870601117639
Reference: [11] Zieliński, J.: The five-variable Volterra system.Cent. Eur. J. Math. 9 (2011), 888-896. Zbl 1236.13024, MR 2805320, 10.2478/s11533-011-0032-0
.

Files

Files Size Format View
CzechMathJ_63-2013-2_17.pdf 259.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo