Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
real hypersurface; complex hyperbolic two-plane Grassmannians; Hopf hypersurface; shape operator; Ricci tensor; normal Jacobi operator; commuting condition
Summary:
We give a classification of Hopf real hypersurfaces in complex hyperbolic two-plane Grassmannians ${\rm SU}_{2,m}/S(U_{2}{\cdot }U_{m})$ with commuting conditions between the restricted normal Jacobi operator $\overline {R}_{N}\phi $ and the shape operator $A$ (or the Ricci tensor $S$).
References:
[1] Alías, L. J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Gen. Relativ. Gravitation 27 (1995), 71-84. DOI 10.1007/BF02105675 | MR 1310212 | Zbl 0908.53034
[2] Alías, L. J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries. Proc. Conf., Valencia, 1998 Publ. R. Soc. Mat. Esp. 1, Real Sociedad Matemática Española, Madrid E. Llinares Fuster et al. (2000), 1-14. MR 1791221 | Zbl 0984.53025
[3] Berndt, J., Suh, Y. J.: Contact hypersurfaces in Kähler manifolds. Proc. Am. Math. Soc. 143 (2015), 2637-2649. DOI 10.1090/S0002-9939-2015-12421-5 | MR 3326043 | Zbl 1318.53052
[4] Latorre, J. M., Romero, A.: Uniqueness of noncompact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Geom. Dedicata 93 (2002), 1-10. DOI 10.1023/A:1020341512060 | MR 1934681 | Zbl 1029.53072
[5] Lee, H., Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting structure Jacobi operators. Mediterr. J. Math. 13 (2016), 3389-3407. DOI 10.1007/s00009-016-0692-x | MR 3554315 | Zbl 06661842
[6] Pérez, J. D., Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator. Open Math. 13 (2015), 493-501. DOI 10.1515/math-2015-0046 | MR 3391385 | Zbl 1348.53064
[7] Suh, Y. J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. Appl. Math. 50 (2013), 645-659. DOI 10.1016/j.aam.2013.01.001 | MR 3032310 | Zbl 1279.53051
[8] Suh, Y. J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field. Adv. Appl. Math. 55 (2014), 131-145. DOI 10.1016/j.aam.2014.01.005 | MR 3176718 | Zbl 1296.53123
[9] Suh, Y. J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor. Int. J. Math. 26 (2015), Article ID 1550008, 26 pages. DOI 10.1142/S0129167X15500081 | MR 3313653 | Zbl 1335.53075
[10] Suh, Y. J.: Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math. 281 (2015), 886-905. DOI 10.1016/j.aim.2015.05.012 | MR 3366856 | Zbl 06458142
[11] Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor. Math. Nachr. 287 (2014), 1524-1529. DOI 10.1002/mana.201300283 | MR 3256976 | Zbl 1307.53043
Partner of
EuDML logo