Previous |  Up |  Next


Toeplitz operator; projective space
We consider separately radial (with corresponding group ${\mathbb {T}}^n$) and radial (with corresponding group ${\rm U}(n))$ symbols on the projective space ${\mathbb {P}^n({\mathbb {C}})}$, as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the $C^*$-algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the commutativity of the $C^*$-algebras is a consequence of the existence of multiplicity-free representations. Furthermore, our method shows how to extend the current formulas for the spectra of the corresponding Toeplitz operators to any closed group lying between ${\mathbb {T}}^n$ and ${\rm U}(n)$.
[1] Dawson, M., Ólafsson, G., Quiroga-Barranco, R.: Commuting Toeplitz operators on bounded symmetric domains and multiplicity-free restrictions of holomorphic discrete series. J. Funct. Anal. 268 (2015), 1711-1732. DOI 10.1016/j.jfa.2014.12.002 | MR 3315576 | Zbl 1320.47029
[2] Engliš, M.: Density of algebras generated by Toeplitz operators on Bergman spaces. Ark. Mat. 30 (1992), 227-243. DOI 10.1007/BF02384872 | MR 1289753 | Zbl 0784.46036
[3] Goodman, R., Wallach, N. R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics 255, Springer, New York (2009). DOI 10.1007/978-0-387-79852-3 | MR 2522486 | Zbl 1173.22001
[4] Grudsky, S., Karapetyants, A., Vasilevski, N.: Toeplitz operators on the unit ball in $\mathbb C^n$ with radial symbols. J. Oper. Theory 49 (2003), 325-346. MR 1991742 | Zbl 1027.32010
[5] Grudsky, S., Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234 (2006), 1-44. DOI 10.1016/j.jfa.2005.11.015 | MR 2214138 | Zbl 1100.47023
[6] Morales-Ramos, M. A., Sánchez-Nungaray, A., Ramírez-Ortega, J.: Toeplitz operators with quasi-separately radial symbols on the complex projective space. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 213-227. DOI 10.1007/s40590-015-0073-7 | MR 3473758 | Zbl 06562396
[7] Quiroga-Barranco, R.: Separately radial and radial Toeplitz operators on the unit ball and representation theory. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 605-623. DOI 10.1007/s40590-016-0111-0 | MR 3544156 | Zbl 06646397
[8] Quiroga-Barranco, R., Sanchez-Nungaray, A.: Commutative $C^*$-algebras of Toeplitz operators on complex projective spaces. Integral Equations Oper. Theory 71 (2011), 225-243. DOI 10.1007/s00020-011-1897-9 | MR 2838143 | Zbl 1251.47065
[9] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, I.: Bargmann-type transforms and spectral representations of Toeplitz operators. Integral Equations Oper. Theory 59 (2007), 379-419. DOI 10.1007/s00020-007-1537-6 | MR 2363015 | Zbl 1144.47024
[10] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, II.: Geometry of the level sets of symbols. Integral Equations Oper. Theory 60 (2008), 89-132. DOI 10.1007/s00020-007-1540-y | MR 2380317 | Zbl 1144.47025
Partner of
EuDML logo