Previous |  Up |  Next


finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
[1] Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261. DOI 10.1007/s11071-011-0261-6 | MR 2929869
[2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914. DOI 10.1007/s11071-012-0395-1 | MR 2945528 | Zbl 1263.93111
[3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.: The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871. DOI 10.1016/j.ijleo.2015.12.134
[4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.: Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185. DOI 10.1016/j.ijleo.2016.05.065
[5] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. DOI 10.1137/s0363012997321358 | MR 1756893 | Zbl 0945.34039
[6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. DOI 10.1016/s0370-1573(02)00137-0 | MR 1913567 | Zbl 0995.37022
[7] Bowong, S., Kakmeni, M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simulat. 71 (2006), 212-228. DOI 10.1016/j.matcom.2006.01.006 | MR 2222398
[8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393. DOI 10.1007/s11071-010-9869-1 | MR 2803218
[9] Chen, X. Y., Lu, J. F.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128. DOI 10.1016/j.physleta.2006.11.092
[10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55. DOI 10.1007/s11071-011-0244-7 | MR 2929853
[11] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. DOI 10.1137/15m1030467 | MR 3534479
[12] Ge, Z. M., Yang, C. H.: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990. DOI 10.1016/j.chaos.2006.05.090
[13] Ge, X. H., Yang, F. W., Han, Q. L.: Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131. DOI 10.1016/j.ins.2015.07.047
[14] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge At The University Press, Cambridge 1934. MR 0944909 | Zbl 0634.26008
[15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906. DOI 10.1103/physreve.74.051906 | MR 2293732
[16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158. DOI 10.1016/j.ins.2015.06.005
[17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. DOI 10.1016/j.automatica.2015.09.028 | MR 3423996
[18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.
[19] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203. DOI 10.1103/physreve.71.037203
[20] Ke, D., Han, Q. L.: Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika 51 (2015), 784-799. DOI 10.14736/kyb-2015-5-0784 | MR 3445984
[21] Ke, D., Han, Q. L.: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327. DOI 10.1002/cplx.21658 | MR 3508425
[22] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121. DOI 10.1103/physreve.75.051121
[23] Li, S. H., Tian, Y. P.: Finite-time synchronization of chaotic systems. Chaos Solitons and Fractals 15 (2003), 303-310. DOI 10.1016/s0960-0779(02)00100-5 | MR 1926750
[24] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134. DOI 10.1063/1.2183734 | MR 2220550 | Zbl 1144.37375
[25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. RWA 10 (2009), 1151-1159. DOI 10.1016/j.nonrwa.2007.12.005 | MR 2474288 | Zbl 1167.37329
[26] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771. DOI 10.1007/s11071-015-2026-0 | MR 3355066
[27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263 | Zbl 1098.37553
[28] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001. DOI 10.1017/cbo9780511755743 | MR 1869044
[29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. DOI 10.1016/j.cnsns.2010.09.038 | MR 2772300 | Zbl 1221.93131
[30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834. DOI 10.1103/physrevlett.85.4831
[31] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152. DOI 10.1063/1.4731265 | MR 3388569
[32] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113. DOI 10.1063/1.3262488
[33] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dynam. 76 (2014), 519-528. DOI 10.1007/s11071-013-1145-8 | MR 3189189 | Zbl 1319.37028
[34] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. DOI 10.1016/j.physleta.2011.04.041 | Zbl 1242.34078
[35] Wang, H., Han, Z. Z., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328. DOI 10.1007/s11071-008-9364-0 | MR 2472222
[36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149. DOI 10.14736/kyb-2015-1-0137 | MR 3333837
[37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. DOI 10.1016/j.physleta.2006.03.047
[38] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dynam. 70 (2012), 197-208. DOI 10.1007/s11071-012-0442-y | MR 2991264 | Zbl 1267.93150
[39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677. DOI 10.1016/j.automatica.2011.08.050 | MR 2886936 | Zbl 1235.93254
[40] Zhang, X. M., Han, Q. L., Yu, X. H.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. DOI 10.1109/tii.2015.2506545
[41] Zhang, G., Liu, Z. R., Ma, Z. J.: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779. DOI 10.1016/j.chaos.2005.11.099 | MR 2280118
[42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642. DOI 10.14736/kyb-2014-4-0632 | MR 3275089 | Zbl 1311.34120
Partner of
EuDML logo