Previous |  Up |  Next

Article

Title: On $\sigma $-permutably embedded subgroups of finite groups (English)
Author: Cao, Chenchen
Author: Zhang, Li
Author: Guo, Wenbin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 11-24
Summary lang: English
.
Category: math
.
Summary: Let $\sigma =\{\sigma _i\colon i\in I\}$ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\{\sigma _i\colon \sigma _i\cap \pi (G)\neq \emptyset \}$. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. \endgraf By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized. (English)
Keyword: finite group
Keyword: $\sigma $-subnormal subgroup
Keyword: $\sigma $-permutably embedded subgroup
Keyword: \hbox {$\sigma $-soluble} group
Keyword: supersoluble group
MSC: 20D10
MSC: 20D20
MSC: 20D35
idZBL: Zbl 07088765
idMR: MR3923570
DOI: 10.21136/CMJ.2018.0148-17
.
Date available: 2019-03-08T14:53:52Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147613
.
Reference: [1] Asaad, M.: On the solvability of finite groups.Arch. Math. 51 (1988), 289-293. Zbl 0656.20031, MR 0964952, 10.1007/BF01194016
Reference: [2] Asaad, M.: On maximal subgroups of Sylow subgroups of finite groups.Commun. Algebra 26 (1998), 3647-3652. Zbl 0915.20008, MR 1647102, 10.1080/00927879808826364
Reference: [3] Asaad, M., Heliel, A. A.: On $S$-quasinormally embedded subgroups of finite groups.J. Pure Appl. Algebra 165 (2001), 129-135. Zbl 1011.200190, MR 1865961, 10.1016/S0022-4049(00)00183-3
Reference: [4] Asaad, M., Ramadan, M., Shaalan, A.: Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group.Arch. Math. 56 (1991), 521-527. Zbl 0738.20026, MR 1106492, 10.1007/BF01246766
Reference: [5] Ballester-Bolinches, A.: Permutably embedded subgroups of finite soluble groups.Arch. Math. 65 (1995), 1-7. Zbl 0823.20020, MR 1336215, 10.1007/BF01196571
Reference: [6] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups.De Gruyter Expositions in Mathematics 53, Walter de Gruyter, Berlin (2010). Zbl 1206.20019, MR 2762634
Reference: [7] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: On minimal subgroups of finite groups.Acta Math. Hung. 73 (1996), 335-342. Zbl 0930.20021, MR 1428040, 10.1007/BF00052909
Reference: [8] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: Sufficient conditions for supersolubility of finite groups.J. Pure Appl. Algebra 127 (1998), 113-118. Zbl 0928.20020, MR 1620696, 10.1016/S0022-4049(96)00172-7
Reference: [9] Bray, H. G., Deskins, W. E., Johnson, D., Humphreys, J. F., Puttaswamaiah, B. M., Venzke, P., Walls, G. L.: Between Nilpotent and Solvable.Polygonal Publ. House, Washington (1982). Zbl 0488.20001, MR 0655785
Reference: [10] Buckley, J. T.: Finite groups whose minimal subgroups are normal.Math. Z. 116 (1970), 15-17. Zbl 0202.02303, MR 0262359, 10.1007/BF01110184
Reference: [11] Chen, X., Guo, W., Skiba, A. N.: Some conditions under which a finite group belongs to a Baer-local formation.Commun. Algebra 42 (2014), 4188-4203. Zbl 1316.20013, MR 3210366, 10.1080/00927872.2013.806519
Reference: [12] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099
Reference: [13] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [14] Guo, W.: The Theory of Classes of Groups.Mathematics and Its Applications 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2000). Zbl 1005.20016, MR 1862683, 10.1007/978-94-011-4054-6
Reference: [15] Guo, W.: Structure Theory for Canonical Classes of Finite Groups.Springer, Berlin (2015). Zbl 1343.20021, MR 3331254, 10.1007/978-3-662-45747-4
Reference: [16] Guo, W., Cao, C., Skiba, A. N., Sinitsa, D. A.: Finite groups with $\mathcal{H}$-permutable subgroups.Commun. Math. Stat. 5 (2017), 83-92. Zbl 1372.20026, MR 3627596, 10.1007/s40304-017-0101-1
Reference: [17] Guo, W., Skiba, A. N.: Finite groups with generalized Ore supplement conditions for primary subgroups.J. Algebra 432 (2015), 205-227. Zbl 1329.20023, MR 3334146, 10.1016/j.jalgebra.2015.02.025
Reference: [18] Guo, W., Skiba, A. N.: Finite groups with permutable complete Wielandt sets of subgroups.J. Group Theory 18 (2015), 191-200. Zbl 1332.20020, MR 3318533, 10.1515/jgth-2014-0045
Reference: [19] Guo, W., Skiba, A. N.: Groups with maximal subgroups of Sylow subgroups $\sigma$-permutably embedded.J. Group Theory 20 (2017), 169-183. Zbl 06718371, MR 3592610, 10.1515/jgth-2016-0032
Reference: [20] Guo, W., Skiba, A. N.: On $\Pi$-quasinormal subgroups of finite groups.Monatsh. Math. 185 (2018), 443-453. Zbl 06857731, MR 3767728, 10.1007/s00605-016-1007-9
Reference: [21] Huppert, B.: Endliche Gruppen I.Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [22] Huppert, B., Blackburn, N.: Finite groups III.Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin (1982). Zbl 0514.20002, MR 0662826, 10.1007/978-3-642-67997-1
Reference: [23] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.J. Algebra 334 (2011), 321-337. Zbl 1248.20020, MR 2787667, 10.1016/j.jalgebra.2010.12.018
Reference: [24] Li, Y., Wang, Y.: On $\pi$-quasinormally embedded subgroups of finite group.J. Algebra 281 (2004), 109-123. Zbl 1079.20026, MR 2091963, 10.1016/j.jalgebra.2004.06.026
Reference: [25] Schmidt, R.: Subgroup Lattices of Groups.De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462
Reference: [26] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups.J. Algebra 315 (2007), 192-209. Zbl 1130.20019, MR 2344341, 10.1016/j.jalgebra.2007.04.025
Reference: [27] Skiba, A. N.: On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups.J. Group Theory 13 (2010), 841-850. Zbl 1205.20027, MR 2736160, 10.1515/JGT.2010.027
Reference: [28] Skiba, A. N.: A characterization of the hypercyclically embedded subgroups of finite groups.J. Pure Appl. Algebra 215 (2011), 257-261. Zbl 1206.20020, MR 2729221, 10.1016/j.jpaa.2010.04.017
Reference: [29] Skiba, A. N.: On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups.J. Algebra 436 (2015), 1-16. Zbl 1316.20020, MR 3348466, 10.1016/j.jalgebra.2015.04.010
Reference: [30] Skiba, A. N.: On some results in the theory of finite partially soluble groups.Commun. Math. Stat. 4 (2016), 281-309. Zbl 06722784, MR 3554918, 10.1007/s40304-016-0088-z
Reference: [31] Srinivasan, S.: Two sufficient conditions for supersolvability of finite groups.Isr. J. Math. 35 (1980), 210-214. Zbl 0437.20012, MR 0576471, 10.1007/BF02761191
Reference: [32] Zhang, C., Wu, Z., Guo, W.: On weakly $\sigma$-permutable subgroups of finite groups.Pub. Math. Debrecen. 91 (2017), 489-502. MR 3744809, 10.5486/PMD.2017.7815
.

Files

Files Size Format View
CzechMathJ_69-2019-1_2.pdf 333.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo