Previous |  Up |  Next

Article

Title: Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$ (English)
Author: Wu, Yansheng
Author: Tang, Gaohua
Author: Deng, Guixin
Author: Zhou, Yiqiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 197-205
Summary lang: English
.
Category: math
.
Summary: An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$. (English)
Keyword: clean element
Keyword: nil-clean element
Keyword: unit-regular element
Keyword: Jacobson's lemma for nil-clean elements
MSC: 11D09
MSC: 16S50
MSC: 16U60
idZBL: Zbl 07088779
idMR: MR3923584
DOI: 10.21136/CMJ.2018.0256-17
.
Date available: 2019-03-08T15:00:02Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147627
.
Reference: [1] Andrica, D., Călugăreanu, G.: A nil-clean $2 \times 2$ matrix over the integers which is not clean.J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. Zbl 1294.16019, MR 3195166, 10.1142/S0219498814500091
Reference: [2] Camillo, V. P., Khurana, D.: A characterization of unit regular rings.Commun. Algebra 29 (2001), 2293-2295. Zbl 0992.16011, MR 1837978, 10.1081/AGB-100002185
Reference: [3] Chen, J., Yang, X., Zhou, Y.: On strongly clean matrix and triangular matrix rings.Commun. Algebra 34 (2006), 3659-3674. Zbl 1114.16024, MR 2262376, 10.1080/00927870600860791
Reference: [4] Cvetkovic-Ilic, D., Harte, R.: On Jacobson's lemma and Drazin invertibility.Appl. Math. Lett. 23 (2010), 417-420. Zbl 1195.16033, MR 2594854, 10.1016/j.aml.2009.11.009
Reference: [5] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [6] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices.J. Algebra 280 (2004), 683-698. Zbl 1067.16050, MR 2090058, 10.1016/j.jalgebra.2004.04.019
Reference: [7] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009
Reference: [8] Lam, T. Y., Nielsen, P. P.: Jacobson's lemma for Drazin inverses.Ring Theory and Its Applications D. V. Huynh et al. Contemporary Mathematics 609, American Mathematical Society, Providence (2014), 185-195. Zbl 1294.15005, MR 3204360, 10.1090/conm/609/12127
Reference: [9] Tang, G., Zhou, Y.: A class of formal matrix rings.Linear Algebra Appl. 438 (2013), 4672-4688. Zbl 1283.16026, MR 3039217, 10.1016/j.laa.2013.02.019
Reference: [10] Zhuang, G., Chen, J., Cui, J.: Jacobson's lemma for the generalized Drazin inverse.Linear Algebra Appl. 436 (2012), 742-746. Zbl 1231.15008, MR 2854904, 10.1016/j.laa.2011.07.044
.

Files

Files Size Format View
CzechMathJ_69-2019-1_16.pdf 278.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo