Previous |  Up |  Next

Article

Title: Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces (English)
Author: Hashimoto, Daiki
Author: Ohno, Takao
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 207-223
Summary lang: English
.
Category: math
.
Summary: We are concerned with the boundedness of generalized fractional integral operators $I_{\rho ,\tau }$ from Orlicz spaces $L^{\Phi }(X)$ near $L^1(X)$ to Orlicz spaces $L^{\Psi }(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials. (English)
Keyword: Orlicz space
Keyword: Riesz potential
Keyword: fractional integral
Keyword: metric measure space
Keyword: lower Ahlfors regular
MSC: 31B15
MSC: 46E30
MSC: 46E35
idZBL: Zbl 07088780
idMR: MR3923585
DOI: 10.21136/CMJ.2018.0258-17
.
Date available: 2019-03-08T15:00:28Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147628
.
Reference: [1] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099
Reference: [2] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces.J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. Zbl 0940.46015, MR 1721824, 10.1112/S0024610799007711
Reference: [3] DeJarnette, N.: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean?.J. Math. Anal. Appl. 423 (2015), 358-376. Zbl 1333.46034, MR 3273185, 10.1016/j.jmaa.2014.09.064
Reference: [4] Dyda, B.: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets.Stud. Math. 197 (2010), 247-256. Zbl 1202.46037, MR 2607491, 10.4064/sm197-3-3
Reference: [5] Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators.Sci. Math. Jpn. 60 (2004), 539-550. Zbl 1058.42007, MR 2099586
Reference: [6] Futamura, T., Shimomura, T.: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space.J. Geom. Anal. 28 (2018), 1233-1244. Zbl 06902266, MR 3790498, 10.1007/s12220-017-9860-x
Reference: [7] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures.Stud. Math. 162 (2004), 245-261. Zbl 1045.42006, MR 2047654, 10.4064/sm162-3-5
Reference: [8] Gunawan, H.: A note on the generalized fractional integral operators.J. Indones. Math. Soc. 9 (2003), 39-43. Zbl 1129.42380, MR 2013135
Reference: [9] Haj{ł}asz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. Zbl 0954.46022, MR 1683160, 10.1090/memo/0688
Reference: [10] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.2307/2039187
Reference: [11] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext, Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8
Reference: [12] Hyt{ö}nen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa.Publ. Mat., Barc. 54 (2010), 485-504. Zbl 1246.30087, MR 2675934, 10.5565/PUBLMAT_54210_10
Reference: [13] Lisini, S.: Absolutely continuous curves in extended Wasserstein-Orlicz spaces.ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. Zbl 1348.49048, MR 3527938, 10.1051/cocv/2015020
Reference: [14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials.J. Math. Soc. Japan 62 (2010), 707-744. Zbl 1200.26007, MR 2648060, 10.2969/jmsj/06230707
Reference: [15] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions.Analysis, München 20 (2000), 201-223. Zbl 0955.31002, MR 1778254, 10.1524/anly.2000.20.3.201
Reference: [16] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149
Reference: [17] Nakai, E.: On generalized fractional integrals.Taiwanese J. Math. 5 (2001), 587-602. Zbl 0990.26007, MR 1849780, 10.11650/twjm/1500574952
Reference: [18] Nakai, E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type.Sci. Math. Jpn. 54 (2001), 473-487. Zbl 1007.42013, MR 1874169
Reference: [19] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. No. 15 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469
Reference: [20] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. No. 9 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312
Reference: [21] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces.Czech. Math. J. 64 (2014), 209-228. Zbl 1340.31009, MR 3247456, 10.1007/s10587-014-0095-8
Reference: [22] Ohno, T., Shimomura, T.: Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. Zbl 1306.46039, MR 3209682, 10.1016/j.na.2014.04.008
Reference: [23] Ohno, T., Shimomura, T.: Musielak-Orlicz-Sobolev spaces on metric measure spaces.Czech. Math. J. 65 (2015), 435-474. Zbl 1363.46027, MR 3360438, 10.1007/s10587-015-0187-0
Reference: [24] O'Neil, R.: Fractional integration in Orlicz spaces. I.Trans. Am. Math. Soc. 115 (1965), 300-328. Zbl 0132.09201, MR 0194881, 10.2307/1994271
Reference: [25] Sawano, Y., Shimomura, T.: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi)}(G)$ over nondoubling measure spaces.J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. Zbl 1275.46017, MR 3040574, 10.1155/2013/984259
Reference: [26] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents.Collect. Math. 64 (2013), 313-350. Zbl 1280.31001, MR 3084400, 10.1007/s13348-013-0082-7
Reference: [27] Sawano, Y., Shimomura, T.: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces.Z. Anal. Anwend. 36 (2017), 159-190. Zbl 1364.26012, MR 3632252, 10.4171/ZAA/1584
Reference: [28] Sawano, Y., Shimomura, T.: Generalized fractional integral operators over non-doubling metric measure spaces.Integral Transforms Spec. Funct. 28 (2017), 534-546. Zbl 1372.42011, MR 3645968, 10.1080/10652469.2017.1318281
Reference: [29] Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for nondoubling measures.Math. Ann. 319 (2001), 89-149. Zbl 0974.42014, MR 1812821, 10.1007/s002080000144
.

Files

Files Size Format View
CzechMathJ_69-2019-1_17.pdf 327.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo