[1] Bachmann, P.: Zahlentheorie. Band 2. Die analytische Zahlentheorie. Teubner, Leipzig (1894), German \99999JFM99999 25.0249.02.
[5] Brouwer, L. E. J.:
Über eindeutige, stetige Transformationen von Flächen in sich. Math. Ann. 69 (1910), 176-180 German \99999JFM99999 41.0544.01.
DOI 10.1007/BF01456868 |
MR 1511582
[10] Chen, H., Ahmad, F., Vorobyov, S., Porikli, F.:
Tensor decompositions in wireless communications and MIMO radar. IEEE J. Sel. Topics Signal Process. 15 (2021), 438-453.
DOI 10.1109/JSTSP.2021.3061937
[11] Chen, Y., Hu, Z., Hu, J., Shu, L.:
Block structure-based covariance tensor decomposition for group identification in matrix variables. Stat. Probab. Lett. 216 (2025), Article ID 110251, 9 pages.
DOI 10.1016/j.spl.2024.110251 |
MR 4791406 |
Zbl 07955915
[15] Lathauwer, L. De, Moor, B. De: From matrix to tensor: Multilinear algebra and signal processing. Mathematics in Signal Processing IV Clarendon Press, Oxford (1998), 1-15.
[17] Einstein, A.:
The foundation of the general theory of relativity. The Collected Papers of Albert Einstein. Volume 6. The Berlin Years: Writings, 1914-1917 Princeton University Press, Princeton (2007), 146-200.
MR 1492181 |
Zbl 0979.01031
[19] Gantmacher, F. R.:
Applications of the Theory of Matrices. Interscience Publishers, New York (1959).
MR 107648 |
Zbl 0085.01001
[36] Lim, L. H.: Singular values and eigenvalues of tensors: A variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05) IEEE, Piscataway (2005), 129-132.
[37] Lin, Z., Lv, T., Zhang, J. A., Liu, R. P.:
Tensor-based high-accuracy position estimation for 5G mmWave massive MIMO systems. IEEE International Conference on Communications (ICC) IEEE, Piscataway (2020), 1-6.
DOI 10.1109/ICC40277.2020.9149001
[39] Mo, C., Wang, X., Wei, Y.:
Time-varying generalized tensor eigenanalysis via Zhang neural networks. Neurocomputing 407 (2020), 465-479.
DOI 10.1016/j.neucom.2020.04.115
[41] Pandey, D., Leib, H.:
Tensor multi-linear MMSE estimation using the Einstein product. Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC). Volume 1 Advances in Intelligent Systems and Computing 1363. Springer, Cham (2021), 47-64.
DOI 10.1007/978-3-030-73100-7_4
[42] Panigrahy, K., Mishra, D.:
On reverse-order law of tensors and its application to additive results on Moore-Penrose inverse. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 184, 21 pages.
DOI 10.1007/s13398-020-00916-1 |
MR 4134541 |
Zbl 1448.15033
[49] Shen, S., Berger, T.:
On the distribution formula of the eigenvalue of the Toeplitz tensor and its application. Appl. Math., J. Chin. Univ. 2 (1987), 151-163 Chinese.
Zbl 0758.60040
[52] Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.:
Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 363 (2020), 124-144.
DOI 10.1016/j.cam.2019.06.004 |
MR 3961163 |
Zbl 1429.94027
[53] Yang, J.-H., Zhao, X.-L., Mei, J.-J., Wang, S., Ma, T.-H., Huang, T.-Z.:
Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. Comput. Math. Appl. 77 (2019), 1255-1272.
DOI 10.1016/j.camwa.2018.11.003 |
MR 3913664 |
Zbl 1442.94015