Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
eigenvalue; eigentensor; determinant; Einstein product; power method
Summary:
The tensor eigenvalue problem has been widely studied in recent years. In this paper, several new properties of eigenvalues and determinants of tensors are explored. We also proposed a formula to compute the determinant of a tensor as a mimic of the matrix determinant. The Perron-Frobenius theorem, one of the most important results in non-negative matrix theory, is proposed for the class of non-negative tensors in the Einstein product framework. Further, the power method, a widely used matrix iterative method for finding the largest eigenvalue, is framed for tensors using the Einstein product. The proposed higher-order power method is applied to calculate the largest eigenvalue of the Laplacian tensors associated with hyper-stars and hyper-trees. The numerical results show that the higher-order power method with the Einstein product is stable.
References:
[1] Bachmann, P.: Zahlentheorie. Band 2. Die analytische Zahlentheorie. Teubner, Leipzig (1894), German \99999JFM99999 25.0249.02.
[2] Bader, B. W., Kolda, T. G.: Tensor Toolbox for Matlab. Version 2.5. Available at {\def{ }\let \relax\brokenlink{ https://}{gitlab.com/tensors/tensor_toolbox}} (2012).
[3] Bomze, I. M., Ling, C., Qi, L., Zhang, X.: Standard bi-quadratic optimization problems and unconstrained polynomial reformulations. J. Glob. Optim. 52 (2012), 663-687. DOI 10.1007/s10898-011-9710-5 | MR 2897452 | Zbl 1268.90085
[4] Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34 (2013), 542-570. DOI 10.1137/100804577 | MR 3054591 | Zbl 1273.15028
[5] Brouwer, L. E. J.: Über eindeutige, stetige Transformationen von Flächen in sich. Math. Ann. 69 (1910), 176-180 German \99999JFM99999 41.0544.01. DOI 10.1007/BF01456868 | MR 1511582
[6] Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438 (2013), 942-952. DOI 10.1016/j.laa.2011.05.040 | MR 2996375 | Zbl 1277.15007
[7] Chang, K. C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350 (2009), 416-422. DOI 10.1016/j.jmaa.2008.09.067 | MR 2476927 | Zbl 1157.15006
[8] Chang, S. Y., Wu, H.-C.: Tensor Wiener filter. IEEE Trans. Signal Process. 70 (2022), 410-422. DOI 10.1109/TSP.2022.3140722 | MR 4372354 | Zbl 1548.94111
[9] Chen, C., Surana, A., Bloch, A. M., Rajapakse, I.: Multilinear control systems theory. SIAM J. Control Optim. 59 (2021), 749-776. DOI 10.1137/19M1262589 | MR 4220654 | Zbl 1460.93014
[10] Chen, H., Ahmad, F., Vorobyov, S., Porikli, F.: Tensor decompositions in wireless communications and MIMO radar. IEEE J. Sel. Topics Signal Process. 15 (2021), 438-453. DOI 10.1109/JSTSP.2021.3061937
[11] Chen, Y., Hu, Z., Hu, J., Shu, L.: Block structure-based covariance tensor decomposition for group identification in matrix variables. Stat. Probab. Lett. 216 (2025), Article ID 110251, 9 pages. DOI 10.1016/j.spl.2024.110251 | MR 4791406 | Zbl 07955915
[12] Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics 185. Springer, New York (1998). DOI 10.1007/978-1-4757-6911-1 | MR 1639811 | Zbl 0920.13026
[13] Cui, L.-B., Chen, C., Li, W., Ng, M. K.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64 (2016), 602-621. DOI 10.1080/03081087.2015.1071311 | MR 3479021 | Zbl 1362.15005
[14] Cui, L.-B., Li, M.-H., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96 (2019), 89-94. DOI 10.1016/j.aml.2019.04.019 | MR 3948863 | Zbl 1503.65066
[15] Lathauwer, L. De, Moor, B. De: From matrix to tensor: Multilinear algebra and signal processing. Mathematics in Signal Processing IV Clarendon Press, Oxford (1998), 1-15.
[16] Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36 (2015), 1073-1099. DOI 10.1137/140975656 | MR 3376129 | Zbl 1321.15018
[17] Einstein, A.: The foundation of the general theory of relativity. The Collected Papers of Albert Einstein. Volume 6. The Berlin Years: Writings, 1914-1917 Princeton University Press, Princeton (2007), 146-200. MR 1492181 | Zbl 0979.01031
[18] Guide, M. El, Ichi, A. El, Jbilou, K., Beik, F. P. A.: Tensor Krylov subspace methods via the Einstein product with applications to image and video processing. Appl. Numer. Math. 181 (2022), 347-363. DOI 10.1016/j.apnum.2022.06.010 | MR 4446090 | Zbl 1497.65083
[19] Gantmacher, F. R.: Applications of the Theory of Matrices. Interscience Publishers, New York (1959). MR 107648 | Zbl 0085.01001
[20] Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994). DOI 10.1007/978-0-8176-4771-1 | MR 1264417 | Zbl 0827.14036
[21] Gu, J., Wei, Y.: Even order uniform hypergraph via the Einstein product. AKCE Int. J. Graphs Comb. 20 (2023), 159-167. DOI 10.1080/09728600.2023.2236165 | MR 4637187 | Zbl 1526.05107
[22] Hajarian, M.: Conjugate gradient-like methods for solving general tensor equation with Einstein product. J. Franklin Inst. 357 (2020), 4272-4285. DOI 10.1016/j.jfranklin.2020.01.010 | MR 4093762 | Zbl 1440.65050
[23] Hao, N., Kilmer, M. E., Braman, K., Hoover, R. C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6 (2013), 437-463. DOI 10.1137/110842570 | MR 3032961 | Zbl 1305.15061
[24] He, Z.-H., Wang, X.-X., Zhao, Y.-F.: Eigenvalues of quaternion tensors with applications to color video processing. J. Sci. Comput. 94 (2023), Article ID 1, 15 pages. DOI 10.1007/s10915-022-02058-5 | MR 4514152 | Zbl 1504.15023
[25] Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50 (2013), 508-531. DOI 10.1016/j.jsc.2012.10.001 | MR 2996894 | Zbl 1259.15038
[26] Hu, S., Qi, L., Xie, J.: The largest Laplacian and signless Laplacian $H$-eigenvalues of a uniform hypergraph. Linear Algebra Appl. 469 (2015), 1-27. DOI 10.1016/j.laa.2014.11.020 | MR 3299053 | Zbl 1305.05129
[27] Hu, W., Yang, Y., Zhang, W., Xie, Y.: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition. IEEE Trans. Image Process. 26 (2017), 724-737. DOI 10.1109/TIP.2016.2627803 | MR 3596376 | Zbl 1409.94251
[28] Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189 (2000), 419-438. DOI 10.1016/S0045-7825(99)00472-7 | MR 1781866 | Zbl 0980.74006
[29] Jiang, Z., Li, J.: Solving tensor absolute value equation. Appl. Numer. Math. 170 (2021), 255-268. DOI 10.1016/j.apnum.2021.07.020 | MR 4300345 | Zbl 07398305
[30] Knowles, J. K.: On the representation of the elasticity tensor for isotropic materials. J. Elasticity 39 (1995), 175-180. DOI 10.1007/BF00043415 | MR 1343155 | Zbl 0852.73020
[31] Kolda, T. G., Bader, B. W.: Tensor decompositions and applications. SIAM Rev. 51 (2009), 455-500. DOI 10.1137/07070111X | MR 2535056 | Zbl 1173.65029
[32] Kolda, T. G., Mayo, J. R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32 (2011), 1095-1124. DOI 10.1137/100801482 | MR 2854605 | Zbl 1247.65048
[33] Li, A.-M., Qi, L., Zhang, B.: E-characteristic polynomials of tensors. Commun. Math. Sci. 11 (2013), 33-53. DOI 10.4310/CMS.2013.v11.n1.a2 | MR 2975365 | Zbl 1282.15023
[34] Liang, M., Zheng, B.: Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems. Comput. Math. Appl. 77 (2019), 1282-1293. DOI 10.1016/j.camwa.2018.11.001 | MR 3913666 | Zbl 1442.15004
[35] Liang, M., Zheng, B., Zhao, R.: Tensor inversion and its application to the tensor equations with Einstein product. Linear Multilinear Algebra 67 (2019), 843-870. DOI 10.1080/03081087.2018.1500993 | MR 3914335 | Zbl 1411.15017
[36] Lim, L. H.: Singular values and eigenvalues of tensors: A variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05) IEEE, Piscataway (2005), 129-132.
[37] Lin, Z., Lv, T., Zhang, J. A., Liu, R. P.: Tensor-based high-accuracy position estimation for 5G mmWave massive MIMO systems. IEEE International Conference on Communications (ICC) IEEE, Piscataway (2020), 1-6. DOI 10.1109/ICC40277.2020.9149001
[38] Miao, Y., Wei, Y., Chen, Z.: Fourth-order tensor Riccati equations with the Einstein product. Linear Multilinear Algebra 70 (2022), 1831-1853. DOI 10.1080/03081087.2020.1777248 | MR 4444581 | Zbl 1492.15011
[39] Mo, C., Wang, X., Wei, Y.: Time-varying generalized tensor eigenanalysis via Zhang neural networks. Neurocomputing 407 (2020), 465-479. DOI 10.1016/j.neucom.2020.04.115
[40] Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31 (2009), 1090-1099. DOI 10.1137/09074838X | MR 2538668 | Zbl 1197.65036
[41] Pandey, D., Leib, H.: Tensor multi-linear MMSE estimation using the Einstein product. Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC). Volume 1 Advances in Intelligent Systems and Computing 1363. Springer, Cham (2021), 47-64. DOI 10.1007/978-3-030-73100-7_4
[42] Panigrahy, K., Mishra, D.: On reverse-order law of tensors and its application to additive results on Moore-Penrose inverse. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 184, 21 pages. DOI 10.1007/s13398-020-00916-1 | MR 4134541 | Zbl 1448.15033
[43] Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40 (2005), 1302-1324. DOI 10.1016/j.jsc.2005.05.007 | MR 2178089 | Zbl 1125.15014
[44] Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325 (2007), 1363-1377. DOI 10.1016/j.jmaa.2006.02.071 | MR 2270090 | Zbl 1113.15020
[45] Qi, L.: $H^{+}$-eigenvalues of Laplacian and signless Laplacian tensors. Commun. Math. Sci. 12 (2014), 1045-1064. DOI 10.4310/CMS.2014.v12.n6.a3 | MR 3194370 | Zbl 1305.05134
[46] Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Advances in Mechanics and Mathematics 39. Springer, Singapore (2018). DOI 10.1007/978-981-10-8058-6 | MR 3791481 | Zbl 1398.15001
[47] Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. Other Titles in Applied Mathematics 151. SIAM, Philadelphia (2017). DOI 10.1137/1.9781611974751 | MR 3660696 | Zbl 1370.15001
[48] Rout, N. C., Panigrahy, K., Mishra, D.: A note on numerical ranges of tensors. Linear Multilinear Algebra 71 (2023), 2645-2669. DOI 10.1080/03081087.2022.2117771 | MR 4661576 | Zbl 1527.15024
[49] Shen, S., Berger, T.: On the distribution formula of the eigenvalue of the Toeplitz tensor and its application. Appl. Math., J. Chin. Univ. 2 (1987), 151-163 Chinese. Zbl 0758.60040
[50] Tarantola, A.: Elements for Physics: Quantities, Qualities, and Intrinsic Theories. Springer, Cham (2006). DOI 10.1007/978-3-540-31107-2
[51] Wang, Y., Wei, Y.: Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems. Comput. Appl. Math. 41 (2022), Article ID 419, 30 pages. DOI 10.1007/s40314-022-02129-1 | MR 4516460 | Zbl 1513.15022
[52] Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.: Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 363 (2020), 124-144. DOI 10.1016/j.cam.2019.06.004 | MR 3961163 | Zbl 1429.94027
[53] Yang, J.-H., Zhao, X.-L., Mei, J.-J., Wang, S., Ma, T.-H., Huang, T.-Z.: Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. Comput. Math. Appl. 77 (2019), 1255-1272. DOI 10.1016/j.camwa.2018.11.003 | MR 3913664 | Zbl 1442.94015
Partner of
EuDML logo