[1] Ben-Israel, A., Greville, T. N. E.:
Generalized Inverses. Theory and Applications. Springer, New York (2003).
MR 1987382 |
Zbl 1026.15004
[2] Björck, Å.:
Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1996).
MR 1386889 |
Zbl 0847.65023
[3] Campbell, S. L., Meyer, C. D.:
Generalized Inverses of Linear Transformations. Dover Publications, New York (1991).
MR 1105324 |
Zbl 0732.15003
[4] Castro-González, N., Ceballos, J., Dopico, F. M., Molera, J. M.:
Accurate solution of structured least squares problems via rank-revealing decompositions. SIAM J. Matrix Anal. Appl. 34 (2013), 1112-1128.
DOI 10.1137/12088642X |
MR 3082494 |
Zbl 1296.65060
[6] Courrieu, P.: Fast computation of Moore-Penrose inverse matrices. Neural Information Processing 8 (2005), 25-29.
[9] Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.:
Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299 (1999), 21-80.
MR 1723709 |
Zbl 0952.65032
[10] Demmel, J. W., Hida, Y., Li, X. S., Riedy, E. J.:
Extra-precise iterative refinement for overdetermined least squares problems. ACM Trans. Math. Software 35 (2009), Art. 28, 32 pages.
DOI 10.1145/1462173.1462177 |
MR 2738180
[11] Demmel, J., Higham, N. J.:
Improved error bounds for underdetermined system solvers. SIAM J. Matrix Anal. Appl. 14 (1993), 1-14.
DOI 10.1137/0614001 |
MR 1199540
[12] Diao, H., Wei, Y.:
On Frobenius normwise condition numbers for Moore-Penrose inverse and linear least-squares problems. Numer. Linear Algebra Appl. 14 (2007), 603-610.
DOI 10.1002/nla.540 |
MR 2353687 |
Zbl 1199.65128
[16] Fiedler, M., Markham, T. L.:
A characterization of the Moore-Penrose inverse. Linear Algebra Appl. 179 (1993), 129-133.
MR 1200147 |
Zbl 0764.15003
[17] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences Johns Hopkins University Press, Baltimore (2013).
MR 3024913
[18] Gulliksson, M., Wedin, P. Å., Wei, Y.:
Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverses. BIT 40 (2000), 513-523.
DOI 10.1023/A:1022319830134 |
MR 1780405
[20] Katsikis, V. N., Pappas, D.:
Fast computing of the Moore-Penrose inverse matrix. Electron. J. Linear Algebra (electronic only) 17 (2008), 637-650.
MR 2460879 |
Zbl 1176.65048
[21] Li, Z.-C., Huang, H.-T., Wei, Y., Cheng, A. H.-D.:
Effective Condition Number for Numerical Partial Differential Equations. Alpha Science International, Oxford (2014).
MR 3495915
[24] Ohta, T., Ogita, T., Rump, S. M., Oishi, S.: Numerical verification method for arbitrarily ill-conditioned linear systems. Transactions of the Japan Society for Industrial and Applied Mathematics 15 (2005), 269-287.
[27] Rao, C. R., Mitra, S. K.:
Generalized Inverses of Matrices and Its Applications. Wiley Series in Probability and Mathematical Statistics Wiley & Sons, New York (1971).
MR 0338013
[30] Rump, S. M.: INTLAB---Interval Laboratory, the Matlab toolbox for verified computations, Version 5.3. Institute for Reliable Computing, Hamburg (2006).
[34] Rump, S. M.: Approximate Inverses of Almost Singular Matrices Still Contain Useful Information, Technical Report 90.1. Faculty for Information and Communications Sciences, TU Hamburg Harburg (1990).
[37] Stewart, G. W.:
On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19 (1977), 634-662.
DOI 10.1137/1019104 |
MR 0461871
[38] Wang, G., Wei, Y., Qiao, S.:
Generalized Inverses: Theory and Computations. Science Press, Beijing (2004).
MR 3793648
[39] Wedin, P. Å.:
Perturbation theory for pseudo-inverses. BIT, Nord. Tidskr. Inf.-behandl. 13 (1973), 217-232.
MR 0336982 |
Zbl 0263.65047
[40] Wei, Y.:
Generalized inverses of matrices, Chapter 27. Handbook of Linear Algebra L. Hogben Chapman & Hall/CRC Press, Boca Raton (2014), 27-1-27-15.
MR 3013937