Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
multiplicative Lie algebra; commutator; nilpotent group; perfect group; central extensions
Summary:
This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.\looseness -1
References:
[1] Bak, A., Donadze, G., Inassaridze, N., Ladra, M.: Homology of multiplicative Lie rings. J. Pure Appl. Algebra 208 (2007), 761-777. DOI 10.1016/j.jpaa.2006.03.029 | MR 2277710 | Zbl 1138.18007
[2] Donadze, G., Inassaridze, N., Ladra, M., Vieites, A. M.: Exact sequences in homology of multiplicative Lie rings and a new version of Stallings' theorem. J. Pure Appl. Algebra 222 (2018), 1786-1802. DOI 10.1016/j.jpaa.2017.08.006 | MR 3763283 | Zbl 1408.18031
[3] Donadze, G., Ladra, M.: More on five commutator identities. J. Homotopy Relat. Struct. 2 (2007), 45-55. MR 2326932 | Zbl 1184.20033
[4] Ellis, G. J.: On five well-known commutator identities. J. Aust. Math. Soc., Ser. A 54 (1993), 1-19. DOI 10.1017/S1446788700036934 | MR 1195654 | Zbl 0777.20001
[5] Lal, R.: Algebra 2. Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier. Infosys Science Foundation Series. Springer, Singapore (2017). DOI 10.1007/978-981-10-4256-0 | MR 3642661 | Zbl 1369.00003
[6] Lal, R., Upadhyay, S. K.: Multiplicative Lie algebras and Schur multiplier. J. Pure Appl. Algebra 223 (2019), 3695-3721. DOI 10.1016/j.jpaa.2018.12.003 | MR 3944451 | Zbl 1473.17050
[7] Pandey, M. S., Lal, R., Upadhyay, S. K.: Lie commutator, solvability and nilpotency in multiplicative Lie algebras. J. Algebra Appl. 20 (2021), Article ID 2150138, 11 pages. DOI 10.1142/S0219498821501383 | MR 4297322 | Zbl 07411748
[8] Pandey, M. S., Upadhyay, S. K.: Theory of extensions of multiplicative Lie algebras. J. Lie Theory 31 (2021), 637-658. MR 4257164 | Zbl 1486.17033
[9] Pandey, M. S., Upadhyay, S. K.: Classification of multiplicative Lie algebra structures on a finite group. Colloq. Math. 168 (2022), 25-34. DOI 10.4064/cm8397-12-2020 | MR 4378560 | Zbl 1514.17025
[10] Point, F., Wantiez, P.: Nilpotency criteria for multiplicative Lie algebras. J. Pure Appl. Algebra 111 (1996), 229-243. DOI 10.1016/0022-4049(95)00115-8 | MR 1394354 | Zbl 0863.20015
[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[12] Walls, G. L.: Multiplicative Lie algebras. Turk. J. Math. 43 (2019), 2888-2897. DOI 10.3906/mat-1904-55 | MR 4038386 | Zbl 1429.20028
Partner of
EuDML logo